
- •Сокращения в тексте . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Краткая история аэрометодов в геологии . . . . . . . . . . . . 4
- •Дешифрировочные признаки . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
- •Этапы детального дешифрирования . . . . . . . . . . . . . . . . . . . 50 Геоморфологическое дешифрирование . . . . . . . . . . . . . . . 52
- •Сокращения в тексте
- •Краткая история аэрокосмомотодов в геологии
- •Виды аэрофотосъемок и аэросъемочные материалы
- •Природные условия аэросъемки
- •Первичные летно-съемочные материалы
- •Геологическая съемка и картирование
- •Дешифровочные признаки
- •Технические средства визуально-инструментального дешифрирования
- •Дешифрирование складчатых образований и разрывных нарушений
- •Горизонтально залегающие толщи
- •Наклонно залегающие толщи и складчатые формы
- •Разрывные нарушения
- •Облачные образования и разрывная тектоника
- •Исследование кольцевых структур
- •Методы дешифрирования
- •Дешифрирование магматических пород
- •Интрузивные породы.
- •Жильные образования
- •Эффузивные породы.
- •Дешифрирование метаморфических пород
- •Дешифрирование осадочных пород
- •Глинистые сланцы и аргиллиты.
- •Конгломераты, песчаники и алевролиты,
- •Известняки, доломиты и мергели
- •Дешифрирование новейшего континетального покрова.
- •Элювий.
- •Делювий.
- •Пролювий.
- •Аллювий.
- •Дельтовые отложения.
- •Озерные отложения.
- •Эоловые отложения
- •Ледниковые отложения.
- •Флювиогляциальные отложения
- •Озерно-ледниковые отложения
- •Гравитационные образования.
- •Карстовые формы рельефа
- •Космическая фотографическая съемка
- •Телевизионная космическая съемка
- •Сканерная съемка
- •Инфракрасная съемка
- •Радиолокационная съемка
- •Лазерная (лидарная) съемка
- •Виды материалов космических съемок по уровням генерализации
- •Этапность в проведении аэрокосмогеологического дешифрирования
- •Этапы детального дешифрирования
- •Геоморфологическое дешифрирование
- •Структурно-геологическое дешифрирование
- •Геодинамическое дешифрирование
- •Гидрогеологическое и инженерно-геологическое дешифрирование
- •Дистанционные методы и поиски рудных полезных ископаемых
- •Использование аэрокосмической информации в нефтяной геологии
- •Перспективы использования аэрокосмических средств для прямого поиска полезных ископаемых
- •Аэрокосмический мониторинг геологической среды
- •Литература
Радиолокационная съемка
Используется в условиях, когда непосредственное наблюдение поверхности затруднено природными условиями – плотной облачностью, туманом и т.д. Съемка может проводится ночью. При радиолокационной съемке обычно используют радиолокаторы бокового обзора, установленные на самолетах и искусственных спутниках Земли. Радиолокационная съемка осуществляется в радиоапазоне электромагнитного спектра (сантиметровые длины волн).
РЛС бокового обзора излучает узконаправленный короткий радиоимпульс в направлении, перпендикулярном движению самолета или космического носителя под некоторым углом к нормали. Разрешение РЛС БО тем больше, чем больше раскрыв антены и ее длина. Длина антены ограничивается размерами самолета. Отраженный от объекта сигнал принимается той же антеной и после усиления и обработки подается на фоторегистратор. Положение элемента изображения строки определяется временем пробега радиолокационного импульса от РЛС до объекта и обратно. На этом принципе основано построение строки изображения. Кадр разворачивается за счет движения самолета.
О свойствах объектов судят по мощности и структуре отраженного сигнала. Объекты частично поглощают, частично пропускают, частично отражают и рассеивают падающие на них радиоволны, в соотношениях определяемых диэлектическими свойствами материалов самих объектов. На снимках объекты, имеющие светлые тона, обладают большим коэффициентом эффективного поверхностного рассеивания, чем объекты с темным фототоном.
Радиолокационное зондирование в СВЧ-диапазоне обладает рядом уникальных возможностей, недоступных для приборов зондирования в видимом и ИК диапазонах. Самым главным достоинством является возможность обследования поверхностных образований. Это свойство обусловлено частичной прозрачностью большинства природных объектов в СВЧ-диапазоне. Глубина проникновения радиолокационного луча определяется потерями, связанными с поглощением и рассеянием электромагнитного излучения. Например, для сухого песка или почвы глубина проникновения может составить несколько метров.
Глубина проникновения радиолокационного импульса в грунт сильно зависит от объемного содержания в нем воды, причем с увеличением ее содержания глубина проникновения экспотенциально падает.
Используя РЛС БО с различными длинами волн возможно получить распределение приповерхностной влажности для исследуемого района. Текстурные неоднородности радиолокационного снимка могут быть тонкосетчатыми, полосчатыми, массивными и т.д.
Особенно хорошо фиксируется на радиолокационных снимках гидросеть. Она дешифрируется лучше, чем на аэроснимках. Высокое разрешение характерно и для районов, покрытых густой растительностью. Разрешающая способность снимков – от 10 до 200 м.
Лазерная (лидарная) съемка
Лидары- зондирующие устройства, состоящие из импульсного источника излучения (лазера) и высокочастотного приемного устройства.
Съемка применяется для выявления и количественной характеристики содержаний различных химических элементов или их соединений в приповерхностном слое атмосферы. Посланный лазером импульс возвращается на борт аэро- или космоносителя в виде эхосигнала, характеристика которого зависит от состава и концентрации определенных веществ в исследуемом слое атмосферы. В схеме работы лидаров могут использоваться резонансное и комбинационное рассеяние, резонансное поглощение. Например, при использовании метода резонансного рассеяния, приемное спектральное устройство лидара настраивают на одну из полос поглощения элемента, входящего в состав полезного ископаемого (например меди или цинка). Луч лазера вызывает флюоресценцию приповерхностных слоев воздуха, что позволяет определить присутствие элемента.
Методы лидарной съемки для геологических целей находятся в стадии разработки.