Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекцій з курсу.doc
Скачиваний:
16
Добавлен:
14.11.2019
Размер:
1.5 Mб
Скачать

1.3 Піднесення в ступінь і добування кореня з комплексного числа

Тригонометрична й показова форми запису комплексного числа зручні при розгляді алгебраїчних операцій піднесення комплексного числа в цілую позитивний ступінь і добування кореня з комплексного числа. Так, якщо , то .

Комплексне число називається коренем n-й ступеня з комплексного числа z, якщо . Із цього визначення треба, щоб . Як було відзначено вище, аргумент комплексного числа визначений не однозначно, а з точністю до адитивного що складає, кратного . Тому з вираження для аргументу комплексного числа де — одне зі значень аргументу комплексного числа z, одержимо, що існують різні комплексні числа, які при піднесенні в n-ю ступінь рівні тому самому комплексному числу z. Модулі цих комплексних чисел однакові й рівні , а аргументи розрізняються на число, кратне . Число різних значень кореня n-й ступеня з комплексного числа z дорівнює n. Точки на комплексній площині, що відповідають різним значенням кореня n-й ступеня з комплексного числа z, розташовані у вершинах правильного n-кутника, уписаного в окружність радіуса із центром у точці z= 0. Відповідні значення виходять при k, що приймає значення k=0,1,…,n-1...

1.4 Межа послідовності комплексних чисел

Послідовністю комплексних чисел називається перенумерована нескінченна множина комплексних чисел.

Надалі послідовність комплексних чисел ми будемо позначати символом . Комплексні числа , що утворять послідовність , називаються її елементами.

Число z називається межею послідовності , якщо для будь-якого позитивного числа можна вказати такий номер , починаючи з якого всі елементи цієї послідовності задовольняють нерівності

Послідовність , що має межу z, називається збіжною до числа z, що записується у вигляді .

Для геометричної інтерпретації граничного переходу в комплексній області зручним виявляється поняття околиці крапки комплексної площини.

Множина точок z комплексної площини, що лежать усередині окружності радіуса із центром у крапці ), називається - околицею точки .

Із цього визначення треба, що крапка z є межею збіжної послідовності , якщо в кожній - околиці крапки z лежать всі елементи цієї послідовності, починаючи з деякого номера, що залежить від .

Оскільки кожне комплексне число характеризується парою дійсних чисел , то послідовності комплексних чисел відповідають дві послідовності дійсних чисел й , складені відповідно з дійсних і мнимих частин елементів послідовності .

Має місце наступне твердження.

Теорема. Необхідною й достатньою умовою збіжності послідовності є збіжність послідовностей дійсних чисел й .

Послідовність називається обмеженою, якщо існує таке позитивне число М, що для всіх елементів цієї послідовності має місце нерівність .

Основна властивість обмеженої послідовності характеризує наступна теорема.

Теорема. Із усякої обмеженої послідовності можна виділити збіжну підпослідовність.

При дослідженні збіжності послідовності в багатьох випадках зручним виявляється необхідна й достатня ознака збіжності послідовності, відомий за назвою критерію Коші.

Критерій Коші. Послідовність сходиться тоді й тільки тоді, коли для будь-якого > 0 можна вказати таке N( ), що при й для будь-якого номера .