
- •Глава 1
- •1.2. Развитие электропривода в горной промышленности
- •Глава 2
- •2.1. Уравнение движения электропривода
- •2.2. Приведение статических моментов
- •2.3. Приведение моментов инерции и поступательно движущихся масс
- •2.4. Продолжительность пуска и остановки электропривода
- •2.5. Статические моменты рабочих машин
- •Глава 3
- •3.1. Основные понятия и определения
- •3.2. Механические характеристики двигателей постоянного тока
- •3.3. Механические характеристики трехфазных асинхронных двигателей
- •3.4. Механическая и угловая характеристики синхронных двигателей
- •Глава 4
- •4.1. Общие понятия и определения
- •4.2. Механические переходные процессы при линейной механической характеристике двигателя и постоянном статическом моменте
- •4.3. Электромагнитные переходные процессы в обмотках машин постоянного тока
- •4.4. Методы расчета переходных процессов
- •4.5. Энергетика переходных процессов в электроприводах
- •5.1. Общие сведения
- •5.2. Пуск двигателей постоянного тока
- •5.4. Тормозные режимы двигателей
- •5.5. Расчет пусковых и тормозных сопротивлений
- •Глава 6
- •6.3. Регулирование скорости асинхронных двигателей
- •Глава 7
- •7.1. Общие сведения
- •7.2. Электропривод по системе генератор — двигатель (г—д)
- •7.5. Многодвигательные системы электропривода
- •7.6. Каскадные схемы электропривода
- •7.7. Электропривод с электромагнитной муфтой скольжения
- •8.1. Общие сведения
- •8.2. Нагрев и охлаждение электрических двигателей
- •8.3. Режимы работы и нагрузочные диаграммы электроприводов
- •8.4. Выбор мощности электродвигателей при длительном режиме работы
- •8.5. Выбор мощности двигателя при кратковременном и повторно-кратковременном режимах работы
- •Глава 9
- •9.1. Классификация аппаратуры и требования, предъявляемые к ней
- •9.2. Аппаратура ручного управления
- •9.3. Командоаппараты
- •9.4. Автоматические выключатели
- •9.5. Реле управления и защиты
- •9.6. Электромагнитные контакторы
- •9.7. Пускатели
- •Глава 10
- •10.1. Общие сведения
- •10.2. Основные виды электрических схем
- •10.3. Принципы автоматического управления пуском электроприводов
- •11.1. Условия эксплуатации и требования, предъявляемые к электрооборудованию
- •11.2. Основные требования, предъявляемые к электроустановкам карьеров и приисков
- •Глава 12
- •12.1. Общие сведения
- •12.2. Рабочие режимы электроприводов экскаваторов
- •12.4. Системы электропривода
- •12.5. Электрооборудование экскаваторов переменного тока
- •12.6. Электрооборудование одноковшовых экскаваторов постоянного тока
- •12.7. Подвод энергии к одноковшовым экскаваторам
- •13.1. Общие сведения
- •13.2. Рабочие режимы электроприводов и способы питания многоковшовых экскаваторов
- •13.3. Требования, предъявляемые к электроприводам и электрооборудованию многоковшовых экскаваторов
- •13.4. Электрооборудование многоковшовых экскаваторов
- •13.5. Перспективы развития электроприводов и электрооборудования
- •Глава 14
- •15.1. Общие сведения
- •15.2. Режимы работы и требования, предъявляемые к электроприводу и схемам управления
- •15.3. Способы питания и схемы управления электроприводами
- •15.4. Перспективы развития электропривода, электрооборудования и схем управления конвейерными установками
- •Глава 16
- •16.1. Общие сведения
- •16.3. Электропривод и схемы управления электроприводами
- •16.5. Перспективы развития электропривода и
- •17.1. Общие сведения
- •17.2. Требования, предъявляемые к электроприводу и электрооборудованию электровозов
- •17.3. Пуск, регулирование скорости и торможение тяговых двигателей
- •17.4. Способы питания и электрооборудование карьерных электровозов
- •17.5. Перспективы развития электрооборудования электровозного транспорта
- •Глава 18
- •Глава 19
- •Глава 20
- •20.1. Общие сведения
- •20.2. Электропривод и электрооборудование водоотливных установок
- •20.3. Электропривод и электрооборудование компрессорных и вентиляторных установок
- •20.4. Электропривод и электрооборудование подъемных установок
- •20.5. Электропривод и электрооборудование вспомогательных установок
- •Глава 21
- •21.1. Основные световые величины и единицы их измерения
- •21.2. Электрические источники света
- •21.3. Осветительные приборы
- •21.4. Системы электрического освещения
- •21.5. Расчет электрического освещения
- •21.6. Схемы осветительных установок. Управление освещением
- •22.1. Общие сведения
- •22.2. Схемы распределения электрической энергии на карьерах и их выбор
- •22.3. Распределение электрической энергии на дражных полигонах и при гидромеханических способах разработки
- •Глава 23
- •23.1. Общие сведения
- •23.2. Графики электрических нагрузок
- •23.3. Методы определения расчетных электрических нагрузок
- •23.4. Определение мощности и числа трансформаторов карьерных подстанций
- •Глава 24
- •24.1. Общие сведения, виды коротких замыканий
- •24.2. Процесс протекания короткого замыкания
- •24.3. Расчет токов короткого замыкания
- •24.4. Электродинамическое и термическое действие тока короткого замыкания
- •24.5. Расчет тока короткого замыкания в сети
- •25.1. Силовые трансформаторы
- •25.2. Выключатели на напряжение свыше 1000 в
- •25.3. Воздушные разъединители
- •25.4. Приводы выключателей и разъединителей
- •25.5. Отделители и короткозамыкатели
- •25.6. Шины и изоляторы
- •25.8. Реакторы
- •25.9. Плавкие предохранители на напряжение свыше 1000 в
- •25.10. Выбор электрооборудования подстанций
- •Глава 26
- •26.1. Общие сведения
- •26.2. Схемы и устройство главных понизительных подстанций
- •26.3. Карьерные распределительные пункты
- •26.4. Передвижные комплектные трансформаторные подстанции
- •26.5. Приключательные пункты
- •Глава 27
- •27.1. Общие сведения
- •27.2. Провода и кабели, применяемые для электрических сетей карьеров и приисков
- •27.3. Конструктивное выполнение воздушных и кабельных электрических сетей
- •27.4. Выбор сечения проводов и кабелей
- •Глава 28
- •28.2. Тяговые подстанции карьеров
- •28.3. Устройство контактной сети
- •28.4. Определение мощности тяговых подстанций
- •28.5. Расчет контактной сети
- •Глава 29
- •29.1. Основные сведения
- •29.2. Максимальная токовая защита электрических сетей
- •29.3. Защита силовых трансформаторов
- •29.4. Защита электрических двигателей
- •29.5. Защита от однофазных замыканий на землю
- •29.6. Регулирование напряжения в распределительных сетях
- •29.7. Основные сведения об автоматизации систем электроснабжения
- •29.8. Перенапряжения и защита от них
- •30.3. Способы защиты от поражения электрическим током
- •30.5. Устройство защитных заземлений
- •30.7. Эксплуатация и контроль заземляющих устройств
- •31.1. Общие сведения
- •31.2. Коэффициент мощности и степень компенсации реактивной мощности
- •31.3. Основные способы повышения коэффициента мощности
- •31.4. Тарификация электроэнергии
- •31.5. Удельный расход электроэнергии
- •31.6. Электровооруженность труда.
- •31.7. Основные сведения по безопасному обслуживанию электроустановок
- •31.8. Защитные средства и правила пользования ими
8.1. Общие сведения
Правильный выбор мощности электродвигателя имеет большое значение и во многом определяет первоначальные затраты и эксплуатационные расходы промышленных установок.
При применении двигателей недостаточной мощности не обеспечивается нормальная работа механизма, снижается производительность, возможен быстрый выход из строя двигателя и т. п. Применение двигателей завышенной мощности ведет к увеличению расхода электроэнергии, снижению коэффициента мощности (для асинхронных двигателей), удорожанию установки и т. д.
Правильно выбранный по мощности двигатель должен быть загружен мощностью, близкой к номинальной, и не должен перегреваться свыше допустимой температуры. Кроме того, он должен обеспечивать нормальную работу при возможных кратковременных перегрузках и удовлетворять условиям пуска. В подавляющем большинстве случаев выбор мощности двигателя производится по нагреву с последующей проверкой по перегрузочной способности и по условию пуска.
Допустимая температура нагрева двигателя определяется теплостойкостью применяемых изоляционных материалов. Необходимо отметить, что с увеличением температуры нагрева двигателя свыше допустимой резко уменьшается срок службы изоляции, а следовательно, и срок службы двигателя. Работа двигателя с нагревом ниже допустимой температуры также нежелательна, так как при этом не будет полностью использоваться его мощность.
Изолирующие материалы, применяемые для электрических машин и аппаратов, разделяются по теплостойкости на следующие классы:
Устанавливается также допустимое превышение температуры как разность между предельно допустимой и стандартной температурой окружающей среды τдоп ≤ θдоп -θср. Стандартная температура θср = 40 °С.
8.2. Нагрев и охлаждение электрических двигателей
При изучении тепловых процессов в электрическом двигателе в целях упрощения двигатель рассматривают как однородное тело и температуру в разных его точках считают одинаковой. Кроме того, считают, что теплоотдача во внешнюю среду пропорциональна превышению температуры τ. Рассмотрим, как протекают процессы нагрева и охлаждения электрического двигателя.
где Р — мощность на валу; η — к. п. д. двигателя при мощности Р.
Если двигатель подключен к сети и работает с постоянной нагрузкой, то за время dt тепло, выделяемое в двигателе (Δpdt), расходуется на нагрев двигателя (Аτdt) и окружающей среды (Cdτ) и уравнение теплового баланса имеет вид
Δpdt = Cdτ + Aτdt, (8.2)
где С — теплоемкость двигателя, т. е. количество тепла, необходимое для повышения его температуры на 1 °С, Дж/°С; А — теплоотдача двигателя, т. е. количество тепла, отдаваемое в окружающую среду за 1 с при разности температур в 1 °С, Дж/с-°С;
τ = θ - θср превышение температуры двигателя над температурой окружающей среды, °С.
Разделив левую и правую части уравнения (8.2) на Adt, получим
Правая часть уравнения (8.3) представляет собой установившееся значение превышения температуры τу = Δр / А, когда dτ / dt = 0, т. е. повышение температуры двигателя прекратилось и все выделяемое тепло передается в окружающую среду.
Решая уравнения (8.5) относительно τ, получим
Кривые нагрева двигателя, построенные по уравнениям (8.6) и (8.7), представлены на рис. 8.1.
Для выяснения физического смысла постоянной времени нагрева Тн предположим, что все тепло, выделяющееся в двигателе, идет на нагревание его, т. е. теплоотдача отсутствует (Л = 0) и в уравнении (8.2) Aτdt — 0.
В этом случае уравнение (8.2) примет вид
Таким образом, при отсутствии теплоотдачи температура и превышение температуры τ возрастают по линейному закону. Если τ = τу, то получим
Таким образом, процесс охлаждения двигателя так же, как и нагрева, подчиняется экспоненциальному закону. Кривая охлаждения двигателя приведена на рис. 8.3.
Постоянные нагрева и охлаждения зависят от мощности, угловой скорости и конструкции двигателей.
Асинхронные двигатели открытого исполнения мощностью до 100 кВт имеют 7V— 15÷30 мин. У двигателей закрытого исполнения при тех же мощностях Тн больше в 1,5—2,5 раза. Для мощных двигателей закрытого исполнения с самовентиляцией Гн может достигать 3—6 ч, а для двигателей с независимой вентиляцией Тн = 0,6÷1,2 ч.
Постоянная времени охлаждения для двигателей с самовентиляцией больше постоянной времени нагрева в 2—3 раза. Для двигателей с независимой вентиляцией
Т0 = Тн.