
- •Глава 8. Селекция и биотехнология
- •Введение
- •Глава 1. Химические компоненты живых организмов § 1. Содержание химических элементов в организме. Макро- и микроэлементы
- •§ 2. Неорганические вещества
- •§ 3. Органические вещества. Аминокислоты. Белки
- •§ 4. Свойства и функции белков
- •§ 5. Углеводы
- •§ 6. Липиды, их строение и функции
- •§ 7. Нуклеиновые кислоты
- •§ 8. Атф. Биологически активные вещества
- •Глава 2. Клетка – структурная и функциональная единица живых организмов
- •§ 9. История открытия клетки. Создание клеточной теории
- •§ 10. Методы изучения клетки
- •§ 11. Строение клетки
- •§ 12. Цитоплазматическая мембрана
- •§ 13. Гиалоплазма. Цитоскелет.
- •§ 14. Клеточный центр. Рибосомы
- •§ 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизомосы
- •§ 16. Вакуоли
- •§ 17. Митохондрии. Пластиды
- •§ 18. Ядро
- •§ 19. Особенности строения клеток прокариот
- •§ 20. Особенности строения клеток эукариот
- •Глава 3. Деление клетки
- •§ 21. Клеточный цикл
- •§ 22. Митоз. Амитоз. Прямое бинарное деление
- •§ 23. Мейоз и его биологическое значение
- •Глава 4. Обмен веществ и превращение энергии в организме
- •§ 24. Общая характеристика обмена веществ и превращения энергии
- •§ 25. Энергетический обмен
- •§ 26. Брожение
- •§ 27. Фотосинтез
- •§ 28. Хранение наследственной информации
- •§ 29. Реализация наследственной информации — синтез белка на рибосомах
- •§ 30. Регуляция транскрипции и трансляции в клетке и организме
- •Глава 5. Структурная организация и регуляция функций живых организмов § 31. Структурная организация живых организмов
- •§ 32. Ткани и органы растений
- •§ 33. Ткани и системы органов животных
- •§ 34. Саморегуляция жизненных функций организмов
- •§ 35. Иммунная регуляция
- •§ 36. Специфическая иммунная защита организма
- •§ 37. Иммунологическая реакция организма (иммунный ответ)
- •Глава 6. Размножение и индивидуальное развитие организмов
- •§ 38. Типы размножения организмов. Бесполое размножение
- •§ 39. Половое размножение. Образование половых клеток
- •§ 40. Оплодотворение
- •§ 41. Онтогенез. Эмбриональное развитие животных
- •§ 42. Постэмбриональное развитие
- •§ 43. Онтогенез человека
- •Глава 7. Наследственность и изменчивость организмов
- •§ 44. Закономерности наследования признаков, установленные г. Менделем. Моногибридное скрещивание. Первый и второй законы Менделя
- •§ 45. Цитологические основы наследования признаков при моногибридном скрещивании
- •§ 46. Дигибридное скрещивание. Третий закон Менделя
- •§ 47. Взаимодействие аллельных генов
- •§ 48. Хромосомная теория наследственности. Сцепленное наследование
- •§ 49. Генетика пола
- •§ 50. Изменчивость организмов, ее типы. Модификационная изменчивость
- •§ 51. Генотипическая изменчивость
- •§ 52.Особенности наследственности и изменчивости человека
- •§ 53. Наследственные болезни человека
- •Глава 8. Селекция и биотехнология
- •§ 54. Cелекции, ее задачи и основные направления
- •§ 55 . Методы селекции и ее достижения
- •§ 56. 0Сновные направления биотехнологии
- •§ 57. Инструменты генетической инженерии
- •§ 58. Успехи и достижения генетической инженерии
§ 23. Мейоз и его биологическое значение
Мейоз (от греч. мейозис – уменьшение) — это особый способ деления клетки, в результате которого из диплоидной материнской клетки образуется четыре гаплоидные дочерние клетки. Путем мейоза образуются споры и половые клетки – гаметы. Из-за редукции (уменьшения) вдвое хромосомного набора в каждую гаплоидную клетку попадает по одной хромосоме из каждой пары хромосом, имеющихся в материнской клетке. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получит также диплоидный набор хромосом, т.е. сохранит присущий данному виду организмов кариотип. Это необходимо для сохранения постоянства числа хромосом при половом размножении.
Механизм мейоза. Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление); при мейозе II гаплоидность клеток сохраняется (эквационное деление).
В профазе мейоза I (или профазе I) происходит постепенная спирализация хроматина с образованием хромосом (рис. ). Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) или четырех хроматид (тетрада). Сближение двух гомологичных хромосом по всей длине с образованием бивалентов называется конъюгацией. Затем между гомологичными хромосомами возникают силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хромосом постепенно нарастает, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется веретено деления.
В метафазе I биваленты располагаются в экваториальной плоскости клетки. В этот момент спирализация хромосом достигает максимума.
В анафазе I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и растягиваются нитями веретена деления к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция).
В телофазе I происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды.
Короткий промежуток времени между первым и вторым мейотическими делениями называется интеркинезом. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.
В профазе II происходят те же процессы, что и в профазе митоза.
В метафазе II хромосомы располагаются в экваториальной плоскости.
В анафазе II хроматиды каждой хромосомы отходят к противоположным полюсам клетки.
В телофазе II образуются 4 гаплоидные клетки.
Таким образом, в результате мейоза из одной диплоидной материнской клетки (2n) образуются 4 клетки с гаплоидным набором хромосом (n). Кроме того, в профазе I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости (см. с. ). Мейоз представляет собой два следующих одно за другим деления генетического материала и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время интерфазы I; интерфаза II практически отсутствует.
1. В чем отличие мейоза от митоза? 2. Что такое конъюгация? В чем биологическое значение этого процесса? 3. Какие события в мейозе обеспечивают уменьшение числа хромосом в гаметах вдвое по сравнению с соматическими клетками? 4. В какую фазу мейоза происходит кроссинговер? 5. При кроссинговере происходит обмен идентичными участками гомологичных хромосом. Подумайте, какое значение имеет это явление. 6. Каково биологическое значение мейоза? 7. Как вы думаете, почему мейоз не наблюдается у организмов, которым не свойственно половое размножение?