
- •Глава 8. Селекция и биотехнология
- •Введение
- •Глава 1. Химические компоненты живых организмов § 1. Содержание химических элементов в организме. Макро- и микроэлементы
- •§ 2. Неорганические вещества
- •§ 3. Органические вещества. Аминокислоты. Белки
- •§ 4. Свойства и функции белков
- •§ 5. Углеводы
- •§ 6. Липиды, их строение и функции
- •§ 7. Нуклеиновые кислоты
- •§ 8. Атф. Биологически активные вещества
- •Глава 2. Клетка – структурная и функциональная единица живых организмов
- •§ 9. История открытия клетки. Создание клеточной теории
- •§ 10. Методы изучения клетки
- •§ 11. Строение клетки
- •§ 12. Цитоплазматическая мембрана
- •§ 13. Гиалоплазма. Цитоскелет.
- •§ 14. Клеточный центр. Рибосомы
- •§ 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизомосы
- •§ 16. Вакуоли
- •§ 17. Митохондрии. Пластиды
- •§ 18. Ядро
- •§ 19. Особенности строения клеток прокариот
- •§ 20. Особенности строения клеток эукариот
- •Глава 3. Деление клетки
- •§ 21. Клеточный цикл
- •§ 22. Митоз. Амитоз. Прямое бинарное деление
- •§ 23. Мейоз и его биологическое значение
- •Глава 4. Обмен веществ и превращение энергии в организме
- •§ 24. Общая характеристика обмена веществ и превращения энергии
- •§ 25. Энергетический обмен
- •§ 26. Брожение
- •§ 27. Фотосинтез
- •§ 28. Хранение наследственной информации
- •§ 29. Реализация наследственной информации — синтез белка на рибосомах
- •§ 30. Регуляция транскрипции и трансляции в клетке и организме
- •Глава 5. Структурная организация и регуляция функций живых организмов § 31. Структурная организация живых организмов
- •§ 32. Ткани и органы растений
- •§ 33. Ткани и системы органов животных
- •§ 34. Саморегуляция жизненных функций организмов
- •§ 35. Иммунная регуляция
- •§ 36. Специфическая иммунная защита организма
- •§ 37. Иммунологическая реакция организма (иммунный ответ)
- •Глава 6. Размножение и индивидуальное развитие организмов
- •§ 38. Типы размножения организмов. Бесполое размножение
- •§ 39. Половое размножение. Образование половых клеток
- •§ 40. Оплодотворение
- •§ 41. Онтогенез. Эмбриональное развитие животных
- •§ 42. Постэмбриональное развитие
- •§ 43. Онтогенез человека
- •Глава 7. Наследственность и изменчивость организмов
- •§ 44. Закономерности наследования признаков, установленные г. Менделем. Моногибридное скрещивание. Первый и второй законы Менделя
- •§ 45. Цитологические основы наследования признаков при моногибридном скрещивании
- •§ 46. Дигибридное скрещивание. Третий закон Менделя
- •§ 47. Взаимодействие аллельных генов
- •§ 48. Хромосомная теория наследственности. Сцепленное наследование
- •§ 49. Генетика пола
- •§ 50. Изменчивость организмов, ее типы. Модификационная изменчивость
- •§ 51. Генотипическая изменчивость
- •§ 52.Особенности наследственности и изменчивости человека
- •§ 53. Наследственные болезни человека
- •Глава 8. Селекция и биотехнология
- •§ 54. Cелекции, ее задачи и основные направления
- •§ 55 . Методы селекции и ее достижения
- •§ 56. 0Сновные направления биотехнологии
- •§ 57. Инструменты генетической инженерии
- •§ 58. Успехи и достижения генетической инженерии
§ 10. Методы изучения клетки
Для изучения строения и жизнедеятельности клеток применяют самые разнообразные методы. Исторически первым таким методом стала световая микроскопия. Световая микроскопия основана на том, что через прозрачный или полупрозрачный объект исследования проходят лучи света, попадающие затем в систему линз объектива и окуляра (рис. ). Эти линзы увеличивают объект исследований. С помощью световых микроскопов была открыта клетка и некоторые ее структуры (пластиды, митохондрии, оболочка, вакуоли, комплекс Гольджи, клеточный центр). Но многие клеточные структуры или детали их строения невозможно было рассмотреть из-за их прозрачности. Поэтому были разработаны специальные методы фиксации и окрашивания, позволяющие получить препараты, на которых хорошо видны окрашенные структуры клетки (рис. ).
Световые микроскопы широко применяются и в настоящее время, однако с их помощью невозможно изучать объекты, размер которых меньше половины длины световой волны. Длина световых волн видимой части спектра света составляет 400—700 нм. Дело в том, что световая волна не может быть отражена очень маленьким предметом, она просто обогнет его. Поэтому у физиков возникла идея использовать вместо луча света пучок электронов, длина волны которых значительно меньше длины волны света, и они способны отражаться от мельчайших объектов. Так, в начале 30-х годов XX в. был создан электронный микроскоп, который дал биологам возможность увидеть составные части клеток размером всего 0,1 нм. В электронном микроскопе видны биологические мембраны (толщина 6—10 нм), рибосомы (диаметр около 20 нм) и другие структуры клетки.
Для выделения и изучения отдельных органоидов клетки используется метод улътрацентрифугирования: разрушенные клетки в пробирках вращают с очень большой скоростью в особых приборах — центрифугах. Так как разные составные части клеток имеют различные массу, размеры и плотность, то они под действием центробежной силы оседают на дно пробирки с разными скоростями. Таким методом выделяют митохондрии, рибосомы и другие органоиды клетки.
В распоряжении ученых сейчас имеется целый ряд химических и физических методов, позволяющих исследовать различные виды молекул, входящих в состав клетки. Для изучения локализации отдельных химических веществ в клетке широко используются методы цито- и гистохимии, основанные на избирательном действии реактивов и красителей на определенные химические вещества цитоплазмы.
Если требуется проследить за судьбой какого-либо химического соединения в клетке, то можно заменить один из атомов в его молекуле на радиоактивный изотоп. Тогда эта молекула будет иметь радиоактивную метку, по которой ее можно обнаружить с помощью счетчика радиоактивных частиц или по ее способности засвечивать фотопленку. Чаще всего в качестве радиоактивной метки используют изотопы водорода (3Н), углерода (14С) и фосфора (32Р).
Метод рентгеноструктурного анализа дает возможность определять пространственное расположение атомов и группировок атомов, например, в молекулах ДНК, белков, входящих в состав клеточных структур.
Для изучения процессов деления клеток, их дифференцировки и специализации используют метод клеточных культур — выращивание отдельных клеток многоклеточных организмов на питательных средах в стерильных условиях.
При исследовании живых клеток, выяснении функций отдельных органоидов применяют метод микрургии, т.е. оперативное воздействие на клетку: удаление или имплантирование отдельных органоидов, пересаживание их из клетки в клетку, микроинъекции различных веществ и т.д.
Проследить за процессами, происходящими в живой клетке в течение длительного времени, позволяет замедленная киносъемка, либо фотосъемка через мощные световые микроскопы.
1. Любую ли клетку можно рассмотреть в световой микроскоп? 2. Чем электронный микроскоп отличается от светового? 3. Можно ли с помощью электронного микроскопа увидеть бактерию диаметром 20 мкм? 4. Для чего проводят ультрацентрифугирование и на каких закономерностях оно основано? В каких целях его проводят? 5. В чем состоит сущность методов цито- и гистохимии? 6. Разрешающая способность световых микроскопов равна приблизительно половине длины волны света, используемого для освещения объекта. Как вы думаете, можно ли в световой микроскоп наблюдать рибосомы, микротрубочки (толщина около 25 нм), эндоплазматическую сеть (толщина мембраны около 6 нм)? Почему вы так решили?