
- •Глава 8. Селекция и биотехнология
- •Введение
- •Глава 1. Химические компоненты живых организмов § 1. Содержание химических элементов в организме. Макро- и микроэлементы
- •§ 2. Неорганические вещества
- •§ 3. Органические вещества. Аминокислоты. Белки
- •§ 4. Свойства и функции белков
- •§ 5. Углеводы
- •§ 6. Липиды, их строение и функции
- •§ 7. Нуклеиновые кислоты
- •§ 8. Атф. Биологически активные вещества
- •Глава 2. Клетка – структурная и функциональная единица живых организмов
- •§ 9. История открытия клетки. Создание клеточной теории
- •§ 10. Методы изучения клетки
- •§ 11. Строение клетки
- •§ 12. Цитоплазматическая мембрана
- •§ 13. Гиалоплазма. Цитоскелет.
- •§ 14. Клеточный центр. Рибосомы
- •§ 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизомосы
- •§ 16. Вакуоли
- •§ 17. Митохондрии. Пластиды
- •§ 18. Ядро
- •§ 19. Особенности строения клеток прокариот
- •§ 20. Особенности строения клеток эукариот
- •Глава 3. Деление клетки
- •§ 21. Клеточный цикл
- •§ 22. Митоз. Амитоз. Прямое бинарное деление
- •§ 23. Мейоз и его биологическое значение
- •Глава 4. Обмен веществ и превращение энергии в организме
- •§ 24. Общая характеристика обмена веществ и превращения энергии
- •§ 25. Энергетический обмен
- •§ 26. Брожение
- •§ 27. Фотосинтез
- •§ 28. Хранение наследственной информации
- •§ 29. Реализация наследственной информации — синтез белка на рибосомах
- •§ 30. Регуляция транскрипции и трансляции в клетке и организме
- •Глава 5. Структурная организация и регуляция функций живых организмов § 31. Структурная организация живых организмов
- •§ 32. Ткани и органы растений
- •§ 33. Ткани и системы органов животных
- •§ 34. Саморегуляция жизненных функций организмов
- •§ 35. Иммунная регуляция
- •§ 36. Специфическая иммунная защита организма
- •§ 37. Иммунологическая реакция организма (иммунный ответ)
- •Глава 6. Размножение и индивидуальное развитие организмов
- •§ 38. Типы размножения организмов. Бесполое размножение
- •§ 39. Половое размножение. Образование половых клеток
- •§ 40. Оплодотворение
- •§ 41. Онтогенез. Эмбриональное развитие животных
- •§ 42. Постэмбриональное развитие
- •§ 43. Онтогенез человека
- •Глава 7. Наследственность и изменчивость организмов
- •§ 44. Закономерности наследования признаков, установленные г. Менделем. Моногибридное скрещивание. Первый и второй законы Менделя
- •§ 45. Цитологические основы наследования признаков при моногибридном скрещивании
- •§ 46. Дигибридное скрещивание. Третий закон Менделя
- •§ 47. Взаимодействие аллельных генов
- •§ 48. Хромосомная теория наследственности. Сцепленное наследование
- •§ 49. Генетика пола
- •§ 50. Изменчивость организмов, ее типы. Модификационная изменчивость
- •§ 51. Генотипическая изменчивость
- •§ 52.Особенности наследственности и изменчивости человека
- •§ 53. Наследственные болезни человека
- •Глава 8. Селекция и биотехнология
- •§ 54. Cелекции, ее задачи и основные направления
- •§ 55 . Методы селекции и ее достижения
- •§ 56. 0Сновные направления биотехнологии
- •§ 57. Инструменты генетической инженерии
- •§ 58. Успехи и достижения генетической инженерии
Глава 2. Клетка – структурная и функциональная единица живых организмов
§ 9. История открытия клетки. Создание клеточной теории
Вы уже знаете, что все живые организмы состоят из клеток. Одни — всего лишь из одной клетки (многие бактерии и протисты), другие являются многоклеточными.
Клетка — элементарная структурная и функциональная единица организма, обладающая всеми основными признаками живого. Клетки способны размножаться, расти, обмениваться веществом и энергией с окружающей средой, реагировать на изменения, происходящие в этой среде. В каждой клетке содержится наследственный материал, в котором заключена информация обо всех признаках и свойствах данного организма. Для того чтобы понять, как существует и работает живой организм, необходимо знать, как организованы и функционируют клетки. Многие процессы, присущие организму в целом, протекают в каждой его клетке (например, синтез органических веществ, дыхание и др.).
Изучением строения клетки и принципов ее жизнедеятельности занимается цитология (от греч. китос — ячейка, клетка и логос – учение, наука).
История открытия клетки. Большинство клеток имеют маленькие размеры и поэтому их нельзя рассмотреть невооруженным глазом. Сегодня известно, что диаметр большинства клеток находится в диапазоне 20 – 100 мкм, а у шаровидных бактерий не превышает 0,5 мкм. Поэтому открытие клетки стало возможным только после изобретения увеличительного прибора — микроскопа. Это произошло в конце XVI — начале XVII в. Однако только спустя полвека, в 1665 г. англичанин Р.Гук применил микроскоп для исследования живых организмов и увидел клетки. Р.Гук срезал тонкий пласт пробки и увидел ее ячеистое строение, подобное пчелиным сотам. Эти ячейки Р. Гук назвал клетками. Вскоре клеточное строение растений подтвердили итальянский врач и микроскопист М. Мальпиги и английский ботаник Н. Грю. Их внимание привлекли форма клеток и строение их оболочек. В результате было дано представление о клетках как о «мешочках», или «пузырьках», наполненных «питательным соком».
Значительный вклад в изучение клетки внес голландский микроскопист А. ван Левенгук, открывший одноклеточные организмы — инфузории, амебы, бактерии. Он также впервые наблюдал клетки животных — эритроциты и сперматозоиды.
В начале XIX в. предпринимаются попытки изучения внутреннего содержимого клетки. В 1825 г. чешский ученый Я. Пуркине открыл ядро в яйцеклетке птиц. Он также ввел понятие «протоплазма» (от греч. протос – первый и плазма – оформленный), которое соответствует сегодняшнему понятию цитоплазмы. В 1831 г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833 г. он пришел к выводу, что ядро является обязательной частью растительной клетки. Таким образом, в это время меняется представление о строении клеток: главным в организации клетки стали считать не клеточную стенку, а ее внутреннее содержимое.*
Клеточная теория. В 1838 г. была опубликована работа немецкого ботаника Матиаса Шлейдена, в которой он высказал идею о том, что клетка является основной структурной единицей растений. Основываясь на работах М. Шлейдена, немецкий зоолог и физиолог Т. Шванн всего через год опубликовал книгу «Микроскопические исследования о соответствии в структуре и росте животных и растений», в которой рассматривал клетку как универсальный структурный компонент животных и растений. Т. Шванн сделал ряд обобщений, которые впоследствии назвали клеточной теорией:
все живые существа состоят из клеток;
клетки растений и животных имеют сходное строение;
каждая клетка способна к самостоятельному существованию;
деятельность организма является суммой процессов жизнедеятельности составляющих его клеток.
Т. Шванн, как и М.Шлейден, ошибочно полагали, что клетки в организме возникают из неклеточного вещества. Поэтому очень важным дополнением к клеточной теории стал принцип Рудольфа Вирхова: «Каждая клетка — от клетки» (1859).
В 1874 г. молодой русский ботаник И.Д.Чистяков впервые наблюдал деление клетки. Позднее немецкий ученый Вальтер Флеминг детально описал стадии деления клетки, а Оскар Гертвиг и Эдуард Страсбургер независимо друг от друга пришли к выводу, что информация о наследственных признаках клетки заключена в ядре. Так, работами многих исследователей была подтверждена и дополнена клеточная теория, основу которой заложил Т. Шванн.
В настоящее время клеточная теория включает следующие основные положения.
1. Клетка — элементарная структурная и функциональная единица живых организмов, обладает признаками и свойствами живого.
2. Клетки всех организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности.
3. Клетки образуются путем деления исходной материнской клетки.
4. Клетки способны к самостоятельной жизнедеятельности, но в многоклеточных организмах их работа скоординирована, и организм представляет собой целостную систему тканей, органов и систем.
Именно благодаря деятельности клеток в многоклеточных организмах осуществляется обмен веществ и энергии, рост и размножение.
Клеточная теория — одно из важнейших обобщений биологии. Ее создание стало важнейшим событием в естествознании. Клеточная теория оказала значительное влияние на развитие биологии и послужила фундаментом для дальнейшего развития многих биологических дисциплин — эмбриологии, гистологии, физиологии и др.
Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя более чем за 160 лет были получены новые сведения о структуре и жизнедеятельности клетки.
1. Каково положение клетки в системе живой природы? 2. Изобретение и совершенствование каких приборов обусловило открытие клетки? 3. Каковы основные положения клеточной теории? 4. Попытайтесь объяснить, почему клетку считают элементарной структурно-функциональной единицей живых организмов?