Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Поверхностные физико-химические процессы - конс...doc
Скачиваний:
47
Добавлен:
13.11.2019
Размер:
483.33 Кб
Скачать

12. Цианирование и нитроцементация.

Цианированием называется ХТО, при которой поверхность насыщается одновременно углеродом и азотом. Цианированный слой обладает высокой твердостью, сопротивлением износу. Повышаются также усталостная прочность и коррозионная стойкость. Основными характеристиками физико-химического состояния упрочненного при цианировании поверхностного слоя являются твердость, толщина, а также зафиксированные значения концентраций углерода и азота. На эти характеристики особое влияние оказывает температура процесса (при повышении температуры содержание углерода в поверхностном слое растет, а при ее снижении - увеличивается концентрация азота). Так как цианирование является по сути дела суперпозицией цементации и азотирования, то можно сказать, что при высокой температуре процесс больше приближается к цементации, а при низкой - к азотированию, поэтому цианирование разделяют на высокотемпературное (800 - 950 °С) и низкотемпературное (500 - 600 °С). Совместная диффузии углерода и азота происходит быстрее, чем каждого из этих элементов в отдельности, поэтому продолжительность цианирования обычно 0,5—2 ч.

При высокотемпературном цианировании поверхность насыщается больше углеродом, чем азотом, т.е. этот процесс приближается к цементации. После такого цианировании изделия подвергают закалке с низким отпуском. Поверхностный слой после глубокого цианирования содержит 0,8 - 1,2% С и 0,2—0,3% N.

Низкотемпературному цианированию подвергают детали, уже прошедшие термическую обработку, как и при азотировании. При таком цианировании поверхность насыщается главным образом азотом, глубина слоя составляет 0,015—0,03 мм.

По аналогии с цементацией цианирование подразделяют на жидкое и газовое, газовое цианирование называют нитроцементацией.

Жидкое цианирование, обеспечивающее высокую производительность, наиболее часто используют для обработки сталей. Его проводят в расплавленных цианистых солях, являющихся поставщиками активных атомов углерода и азота, например Na(CN) или Ca(CN)2.

Низкотемпературному цианированию подвергают режущий инструмент из быстрорежущей стали (фрезы, метчики, сверла, зенкеры), а также углеродистые стали. Сущность процесса цианирования углеродистых сталей состоит в насыщении сталей азотом и углеродом, которое осуществляется в цианистых солях (40 % KCN + 60 % NaCN) при пропускании сухого воздуха. В результате такой обработки, которая реализуется при 570 °С в течение 0,5 - 3 ч, на поверхности детали формируется тонкий (10 - 15 мкм) карбонитридный слой Fe3(CN), менее хрупкий, чем чистые карбиды и нитриды (Fe3C и Fe3N) и в то же время обладающий хорошим сопротивлением износу. Между этим слоем и матрицей образуется подслой азотистого твердого феррита (на легированных сталях твердость достигает 600 - 1000 HV) толщиной 200 - 500 мкм.

Высокотемпературное цианирование применяют для обработки простых и легированных средне- и низкоуглеродистых сталей. Насыщение обычно проводят в расплавленных солях следующих составов: 40 % NaCN, 40 % NaCl, 20 % Na2CO3 (температура расплава 820 - 850 °С) или 6 % NaCN, 80 % BaCl2, 14 % NaCl (900 - 950 °C). Увеличение содержания цианистых солей способствует повышению концентрации С и N в поверхностном слое. Толщина модифицированной зоны  зависит от состава расплава, температуры и продолжительности  процесса. Средняя скорость высокотемпературной нитроцементации составляет 80 - 100 мкм/ч. Для конструкционных сталей  = 15 - 500 мкм, а твердость превышает HRСэ 58 (для быстрорежущих сталей - 10 - 60 мкм и HRСэ 60 - 72 соответственно). Цианированный слой по сравнению с цементированным обладает большей твердостью и более высоким сопротивлением износу и коррозии.

Главный недостаток жидкостного цианирования — ядовитость цианистых солей. Этого недостатка нет при газовом цианировании.

Нитроцементация - газовое цианирование проводят в газовых смесях, содержащих 70—80% цементирующего газа и 20—30% аммиака. Состав газа и температура определяют соотношение углерода и азота в цианированном слое. Глубина слоя зависит от температуры процесса и продолжительности выдержки.

По сравнению с газовой цементацией нитроцементания имеет ряд преимуществ: меньше деформация и коробление изделий, больше сопротивление износу и коррозионная стойкость.

Нитроцементация осуществляется следующим образом: в контейнер загружается карбюризатор, в состав которого входят цианистые и углекислые соли (например 30- 40% K4Fe(CN)6, 10 % Nа2CO3 и древесный уголь), которые, при нагревании разлагаются с выделением CO2 и азота. Процесс насыщения может лимитироваться кинетикой химических реакций, доставкой CO2 и азота к поверхности детали или диффузией C и N в матрицу, поэтому производительность такого способа невысока.

Обработку деталей производят в среде науглероживающих и азотирующих газов (например, аммиак 2 – 6 % с пропаном или светильным газом). 208-214 c.[5].