
- •Лекции по электротехнике и электронике
- •Содержание
- •Предисловие
- •Лекция 1 основные понятия электротехники Электрические заряды
- •Электрический ток
- •Электрическая цепь
- •Источники электрической энергии
- •Потребители электрической энергии
- •Электрическая схема и её элементы
- •Закон Ома
- •Закон Ома для участка цепи
- •Закон Ома для активного участка цепи
- •Закон Ома в дифференциальной форме
- •Параллельное соединение резисторов
- •Соединение треугольником и звездой
- •Лекция 3 Законы токораспределения в электрических цепях Распределение тока в параллельных ветвях
- •Законы Кирхгофа в электротехнике
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
- •Применение законов Кирхгофа для расчета электрических цепей
- •Электрическая мощность и баланс мощностей
- •Баланс мощностей
- •Лекция 4 электрические цепи синусоидального тока Принцип получения гармонически изменяющегося тока
- •Представление гармонических колебаний вращением вектора на комплексной плоскости
- •Опережение и отставание гармонических колебаний
- •Понятие комплексных амплитуд
- •Принцип расчета цепей переменного тока
- •Индуктивность и ёмкость в цепи переменного тока
- •Закон Ома для цепей переменного тока
- •Переход от алгебраической формы к показательной для производства деления был рассмотрен в разделе «Представление гармонических колебаний вращением вектора на комплексной плоскости»
- •Векторная диаграмма напряжений
- •Мощности в цепи переменного тока
- •Активная мощность
- •Реактивная мощность
- •Полная мощность
- •Треугольник мощностей
- •Баланс мощностей
- •Заключение
- •Лекция 5 Основные понятия радиоэлектроники Диэлектрики, полупроводники и проводники
- •Энергетические состояния электронов в твёрдых телах
- •Электропроводность полупроводников
- •Полупроводниковый p-n- переход
- •Лекция 6 полупроводниковые диоды
- •Выпрямительные диоды
- •Стабилитроны
- •Туннельные диоды
- •Диоды Шоттки
- •Варикапы
- •Фотодиоды
- •Светодиоды
- •Другие типы диодов
- •Лекция 7 транзисторы
- •Биполярные транзисторы
- •Устройство и принцип действия биполярного транзистора
- •Схемы включения биполярного транзистора
- •Статические характеристики транзистора
- •Полевые транзисторы
- •Полевые транзисторы с управляющим р-n- переходом
- •Вольт-амперные характеристики полевого транзистора с р-п- переходом и каналом п- типа
- •Полевые транзисторы с изолированным затвором
- •Статические характеристики мдп - транзисторов
- •Область применения
- •Основные схемы включения полевых транзисторов
- •Лекция 8 нелинейные цепи и их расчет
- •Расчет электрических цепей с полупроводниковыми диодами.
- •Лекция 9 Аналоговые устройства электроники
- •Источники питания электронных устройств. Выпрямители переменного тока и стабилизаторы
- •Двухполупериодная схема выпрямления.
- •Частотные электрические фильтры
- •Усилители электрических сигналов
- •Специальные виды усилителей
- •Генераторы сигналов Генераторы гармонических колебаний
- •Генераторы сигналов специальной формы
- •Переходные процессы в электрических цепях
- •Закон коммутации
- •Характеристики переходного процесса
- •Интегрирующие и дифференцирующие цепи
- •Мультивибратор
- •Переходные процессы в цепи, содержащей rlc
- •Лекция 10 резонанс в электрических цепях и беспроводная связь
- •Принципы беспроводной связи
- •Лекция 11 Цифровая электроника
- •Электронные ключи
- •Логические схемы
- •Счётчики
- •Регистры
- •Делители числа входных импульсов
- •Генераторы и формирователи импульсов
- •Лекция 12 пакетная передача даных Структура пакета
- •Передача данных в сети интернет
- •Сотовая связь
- •Методы обнаружения ошибок
- •Проверка на четность/нечетность
- •Метод полиномиальных кодов
- •Заключение
- •Дополнительная литература
Устройство и принцип действия биполярного транзистора
Схематическое изображение структуры биполярных транзисторов приведено на рисунке 30
Рисунок 30 Возможные структуры и уловное изображение
биполярного транзистора.
Биполярные транзисторы бывают либо п-р-п, либо р-п-р типа. Условно их можно представить в виде соединения двух диодов с центральным выводом. Центральная область (а также вывод от нее) называется базой (Б), крайние, имеющие иной тип проводимости по сравнению с базой, - коллектором (К) и эмиттером (Э). К каждой из областей припаяны выводы, при помощи которых прибор включается в схему.
Переход между базой и эмиттером называется эмиттерным, а между базой и коллектором – коллекторным. Конструктивно транзисторы различаются в зависимости от мощности и метода образования р-n переходов. Физические процессы, протекающие в транзисторах обоих типов, аналогичны.
В зависимости от полярности напряжений, приложенных к эмиттерному и коллекторному переходам транзистора, различают четыре режима его работы:
Активный режим. На эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Этот режим является основным режимом работы транзистора при работе с аналоговыми сигналами.
Режим отсечки. К обоим переходам подводятся обратные напряжения. Поэтому через них проходит лишь незначительный ток, обусловленный движением неосновных носителей заряда. Транзистор в режиме отсечки оказывается запертым. Этот режим является основным режимом работы транзистора при работе с дискретными (цифровыми) сигналами.
Режим насыщения и инверсный режим. Эти режимы используются значительно реже. Инверсный режим не соответствует нормальным условиям эксплуатации транзистора.
Схемы включения биполярного транзистора
В конкретных электронных схемах он включается как четырехполюсник, у которого имеются входная и выходная цепи. Один из электродов транзистора является общим. Возможны 3 схемы включения: схема с общей базой (ОБ, рис а), схема с общим эмиттером (ОЭ, рис б) и схема с общим коллектором (ОК, рис в) – показанные на рисунке 3.1 (а), (б),
Рисунок 31 Схемы включения транзистора
Принцип работы биполярного транзистора в активном режиме рассмотрим на примере транзистора n-р-n типа для схемы с общей базой как наиболее простой. Для этого на эмиттерный переход подадим прямое напряжение (Uбэ), а на коллекторный – обратное (Uкб, рисунок 32). Получается схема четырёхполюсника, где вход со стороны эмиттера, а выход со стороны коллектора, база – электрод управления.
Рисунок 32 Принцип работы биполярного транзистора
Для отпирания р-п перехода требуется незначительное напряжение, поэтому величина Uбэ небольшая, в то время как обратное напряжение на коллекторном переходе может быть существенно больше. Ток, проходящий через эмиттерный переход, получил название эмиттерного тока. Этот ток равен сумме дырочной и электронной составляющих
,
ІЭп – составляющая эмиттерного тока, обусловленная инжекцией электронов из области эмиттера;
ІБр – составляющая эмиттерного тока, обусловленная инжекцией дырок из области базы.
В транзисторах, как было сказано выше, концентрация носителей заряда в базе значительно меньше, чем в эмиттере. Это приводит к тому, что число электронов, инжектированных из эмиттера в базу, во много раз превышает число дырок, движущихся в противоположном направлении. Следовательно, почти весь ток через эмиттерный переход обусловлен электронами:
Инжектированные через эмиттерный переход электроны проникают вглубь базы, частично рекомбинируют и оставшаяся часть достигает коллекторного перехода.
Электрическое поле этого перехода переносят электроны в область коллектора.
Ток, возникший в коллекторной цепи:
Последнее упрощение
в сделано на основе того, что число
рекомбинаций незначительно, т.к. база
узка и имеет мало примесей. Таким образом,
практически весь ток, возникший в цепи
эмиттера, переносится в цепь коллектора.
Вследствие
того, что напряжение
в цепи коллектора значительно превышает
напряжение, подведенное
к эмиттерному переходу, а токи в цепях
эмиттера и
коллектора практически равны, следует
ожидать, что мощность полезного
сигнала на выходе схемы (в коллекторной
цепи) может оказаться
намного больше, чем во входной (эмиттерной)
цепи транзистора. (напомним: мощность
)
Если под воздействием Uбэ ток эмиттера возрастет на некоторую величину, то соответственно возрастут и остальные токи транзистора.
Рассмотрим рабочие статические характеристики транзистора.