
- •Естествознание как отрасль научного познания Наука как компонент духовной культуры
- •Естествознание в системе наук. Предмет и объект естествознания
- •Проблема двух культур – естественнонаучной и гуманитарной
- •Структура естественнонаучного познания Понятие метода и методологии
- •Уровни и формы научного познания
- •Методологические установки познания
- •Эволюционные и революционные периоды развития науки
- •Периодизация и хронологическая развитие естествознания
- •Мифологическая картина мира
- •Натурфилософский этап
- •Математическая программа
- •Атомистическая программа
- •Программа Аристотеля
- •Естествознание в эпоху Средневековья
- •Особенности средневековой духовной культуры
- •Особенности познавательной деятельности
- •Познание природы в эпоху Возрождения
- •Научная революция 17 века: возникновение классической механики
- •Развитие астрономии. И. Кеплер
- •Развитие физики
- •Развитие биологии
- •Развитие химии
- •Итоги научной революции 16-17 вв.
- •Естествознание 18 – первой половины 19 веков Развитие физики
- •Развитие астрономии
- •Развитие химии
- •Развитие биологии
- •Кризис естествознания на рубеже веков. Научная революция XX века
- •Развитие физики
- •Развитие астрономии
- •Развитие биологии
- •Развитие химии
- •Научная революция 20 века
- •Современная физическая картина мира Структура физических знаний
- •Физические картины мира
- •Материя. Структурность и системность материи
- •Концепции пространства и времени в современном естествознании
- •Принципы современной физики
- •Термодинамика
- •Электромагнитная концепция
- •Квантовая механика
- •Физика элементарных частиц
- •Современная астрономическая картина мира Измерение и изучение Вселенной
- •Строение Вселенной
- •Эволюция Вселенной
- •Жизнь и разум во Вселенной: проблема внеземных цивилизаций
- •Современная географическая картина мира
- •Современная химическая картина мира
- •Атомно-молекулярное учение (учение о составе).
- •Структурная химия.
- •Учение о химических процессах.
- •Эволюционная химия
- •Современная биологическая картина мира
- •Классификация биологических наук
- •Основные этапы развития биологии в XX веке
- •Методологические установки современной биологии
- •Существенные черты живых систем
- •Основные уровни организации живого
- •Возникновение жизни на Земле
- •Основные этапы геологической истории Земли
- •Развитие жизни на Земле
- •Экологическая картина мира
- •Учение о биосфере
- •Экологические концепции
- •Возникновение человека и общества (антропосоциогенез) Естествознание XVII— первой половины XIX в. О происхождении человека
- •Предпосылки антропосоциогенеза
- •Этапы антропосоциогенеза
- •Организм человека как единая биологическая система
- •Сознание. Субъективный мир человека
- •Концептуальные перспективы естествознания Теория самоорганизации (синергетика)
- •1. Открытость.
- •2. Нелинейность.
- •3. Диссипативпостъ.
- •Глобальный эволюционизм
- •Наука и будущее человечества Естествознание как революционизирующая сила цивилизации
- •Наука и квазинаучные формы духовной культуры
Современная химическая картина мира
Химию принято подразделять на 5 разделов: неорганическая, органическая, физическая, аналитическая и химия высокомолекулярных соединений.
К важнейшим особенностям современной химии относятся:
1. Дифференциация главных разделов химии на отдельные, во многом самостоятельные научные дисциплины, которая основана на различии объектов и методов исследования.
2. Интеграция химии с другими науками. В результате этого процесса возникли: биохимия, биоорганическая химия и молекулярная биология, которые изучают химические процессы в живых организмах. На стыке дисциплин возникли и геохимия, и космохимия.
3. Появление новых физико-химических и физических методов исследования.
4. Формирование теоретического фундамента химии на основе квантово-волновой концепции.
По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению основной задачи (исследование происхождения свойств веществ и разработка на этой основе методов получения веществ с заранее заданными свойствами).
1. Учение о составе, в котором свойства веществ связывались исключительно с их составом. На этом уровне содержание химии исчерпывалось ее традиционным определением – как науки о химических элементах и их соединениях.
2. Структурная химия. Эта концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структурой молекул. В рамках этого подхода возникло понятие «реакционная способность», включающее представление о химической активности отдельных фрагментов молекулы – отдельных ее атомов или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналитической в синтетическую науку. Этот подход позволил в конечном итоге создать промышленные технологии синтеза многих органических веществ.
3. Учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химических превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы изменения свойств получаемых веществ.
4. Эволюционная химия. Последний этап концептуального развития химии связан с использованием в ней некоторых принципов, реализованных в химизме живой природы. В рамках эволюционной химии осуществляется поиск таких условий, при которых в процессе химических превращений идет самосовершенствование катализаторов реакций. По существу, речь идет о самоорганизации химических процессов, происходящих в клетках живых организмов.
Атомно-молекулярное учение (учение о составе).
Создание атомно-молекулярного учения относится к концу 18 – началу 19 века. Огромный вклад в создание этой теории внес М.В. Ломоносов. Основные положения этой теории:
1. Вещества состоят из молекул; молекулы различных веществ отличаются между собой химическим составом, размерами, физическими и химическими свойствами.
2. Молекулы находятся в непрерывном движении; между ними существует взаимное притяжение и отталкивание. Скорость движения молекул зависит от агрегатного состояния веществ.
3. При физических явлениях состав молекул остается неизменным, при химических – они претерпевают качественные и количественные изменения и из одних молекул образуются другие.
4. Молекулы состоят из атомов. Атомы характеризуются определенными размерами и массой. Свойства атомов одного и того же элемента одинаковы и отличаются от свойств атомов других элементов. При химических реакциях атомы в отличие от молекул не претерпевают качественных изменений.
Атом – электронейтральная система взаимодействующих элементарных частиц, состоящих из ядра (образованного протонами и нейтронами) и электронов.
Молекула – электронейтральная наименьшая совокупность атомов, образующих определенную структуру посредством химических связей.
Совокупность атомов с одинаковым зарядом ядра называется химическим элементом.
Второй важной характеристикой атома после заряда ядра является его масса. Выделяют абсолютную и относительную атомную массу. Мерой относительных атомной и молекулярной масс выбрана 1/12 часть массы атома изотопа углерода 12С, которая называется атомной единицей массы (а.е.м.).
Моль – единица количества вещества, содержащая столько же структурных единиц данного вещества, сколько атомов содержится в 12 г углерода 12С. Установлено, что в нем содержится 6,02 ∙ 1023 структурных единиц (атомов, молекул, ионов), которое называется числом Авогадро.
Закон сохранения массы веществ (Ломоносов, Лавуазье): масса веществ, вступивших в реакцию, равна массе веществ, получившихся в результате реакции. Этот закон не выполняется в ядерных реакциях.
Закон постоянства состава (Пруст): каждое чистое соединение независимо от способа его получения всегда имеет один и тот же состав.
Закон кратных отношений (Дальтон): если два элемента могут образовывать между собой несколько соединений, то массовые доли любого из элементов в этих соединениях относятся друг к другу как небольшие целые числа.
Закон Авогадро: в равных объемах различных газов при одинаковых температуре и давлении содержится одно и то же число молекул. В частности, при температуре 0 0 С и давлении 101,325 кПа 1 моль любого газа занимает объем 22,4 л.
Периодический закон и строение атома.
Планетарная модель строения атома была предложена в результате открытия ядра атома Резерфордом:
1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре.
3. Вокруг ядра по замкнутым орбитам вращаются электроны с отрицательными электрическими зарядами, образующие электронные оболочки атома. Их число равно заряду ядра.
Ядро атома состоит из протонов и нейтронов (общее название – нуклоны). Оно характеризуется тремя параметрами: А – массовое число, Z – заряд ядра, равный числу протонов, и N – число нейтронов в ядре. Эти параметры связаны между собой соотношением: А=Z+N.
Число протонов в ядре равно порядковому номеру элемента.
Атомы, ядра которых содержат одинаковое число протонов и разное число нейтронов, называются изотопами. Химические свойства изотопов идентичны.
Электронные конфигурации атомов. В основе современной теории строения атома (квантовой механике атома) лежат следующие основные положения:
1. Электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна. Длина волны электрона λ и его скорость ν связаны соотношением де Бройля:
λ=h/mv,
h – постоянная Планка,
m – масса электрона.
2. Для электрона невозможно одновременно точно измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот. Математическим выражением принципа неопределенности служит соотношение:
Δx∙m∙Δv>h/4π,
Δx – неопределенность положения координаты,
Δv – погрешность измерения скорости,
h – постоянная Планка.
3. Электрон в атоме не движется по определенным траекториям, а может находится в любой части околоядерного пространства. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью.
Квантовые числа электрона. Согласно квантовой механике, движение электрона в атоме описывается пятью квантовыми числами: главным, побочным (орбитальным), магнитным, спиновым и проекцией спина (магнитным спиновым числом).
Главное квантовое число (n) определяет общую энергию электрона. Оно может принимать любые целые значения, начиная с 1.
Побочное (орбитальное) квантовое число (l) характеризует форму орбитали. Оно может принимать значения от 0 до n-1. обычно численные значения l принято обозначать следующими буквенными сииволами:
Значение l 0 1 2 3 4
Буквенное обозначение s p d f g
В этом случае говорят о s-, p-, d-, f-, g –орбиталях.
Набор орбиталей с одинаковыми значениями n называется оболочкой (или энергетическим уровнем), с одинаковыми значениями n и l - подоболочкой (подуровнем).
Магнитное квантовое число (ml) характеризует направление орбитали в пространстве. Оно может принимать любые целые значения от – l до + l, включая 0.
Каждый электрон характеризуется спиновым квантовым числом (s). Спин – это чисто квантовое свойство электрона, s= ½. Проекция спина на ось z (магнитное спиновое число ms) может иметь лишь два значения: +1/2 или -1/2.
Принципы заполнения орбиталей.
1. Принцип Паули. В атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковы. Эквивалентное определение: на каждой орбитали может находится не более двух электронов.
2. Принцип наименьшей энергии: в основном состоянии атома каждый электрон располагается так, чтобы его энергия была минимальной. Энергия орбиталей увеличивается в следующем порядке: 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p.
Как видно из этого ряда, чем меньше сумма n+l, тем меньше энергия орбитали. При заданном значении n+l наименьшую энергию имеет орбиталь с наименьшим n.
3. Правило Гунда. В основном состоянии атом должен иметь максимально возможное число неспаренных электронов в пределах определенного подуровня.
Принцип наименьшей энергии и правило Гунда справедливы только для основных состояний атомов. В возбужденных состояниях электроны могут находится на любых орбиталях атомов, если при этом не нарушается принцип Паули.
Периодический закон в современной формулировке: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра элемента.
Физический смысл периодичности химических свойств состоит в периодическом изменении конфигурации электронов на внешнем энергетическом уровне (валентных электронов) с увеличением заряда ядра.
Графическим изображением периодического закона является периодическая таблица. Она состоит из 7 периодов и 8 групп.
Период – это совокупность элементов с одинаковым максимальным значением главного квантового числа валентных электронов ( с одинаковым номером внешнего энергетического уровня), равным номеру периода. Периоды могут состоять из 2, 8, 18 или 32 элементов в зависимости от максимального числа электронов на внешнем энергетическом уровне. В коротких периодах металлические свойства ослабляются, а неметаллические усиливаются с увеличением порядкового номера элемента.
Группа – совокупность элементов с одинаковым числом валентных электронов, равным номеру группы. Валентные электроны s и p соответствуют элементам главных подгрупп, валентные элементы d и f – элементам побочных подгрупп. Во всех группах металлические свойства усиливаются с увеличением порядкового номера. Все элементы побочных подгрупп являются металлами.