Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика для заочников.doc
Скачиваний:
5
Добавлен:
09.11.2019
Размер:
5.83 Mб
Скачать

Тема 8. Дифференциальное исчисление функций нескольких переменных.

Основные теоретические сведения.

1. Пусть даны два непустых множества D и U. Если каждой паре действительных чисел (x; y), принадлежащей множеству D, по определенному правилу ставится в соответствии один и только один элемент u из U, то говорят, что на множестве D задана функция f (или отображение) со множеством значений U. При этом пишут , или , или . Множество D называется областью определения функции, а множество U, состоящее из всех чисел вида , где , множеством значений функции. Значение функции в точке называется частным значением функции и обозначается или .

2. Частные производные первого порядка.

Частной производной от функции по независимой переменной называется конечный предел

вычисленный при постоянном .

Частной производной по называется конечный предел

,

вычисленный при постоянном .

Для частных производных справедливы обычные правила и формулы дифференцирования.

3. Полный дифференциал.

Полным приращением функции в точке называется разность где и произвольные приращения аргументов.

Функция называется дифференцируемой в точке , если в этой точке полное приращение можно представить в виде

, где .

Полным дифференциалом функции называется главная часть полного приращения , линейная относительно приращений аргументов и , т.е. .

Дифференциалы независимых переменных совпадают с их приращениями, т.е. и .

Полный дифференциал функции вычисляется по формуле

.

Аналогично, полный дифференциал функции трех аргументов вычисляется по формуле

.

При достаточно малом для дифференцируемой функции справедливы приближенные равенства

.

4. Частные производные и дифференциалы высших порядков.

Частными производными второго порядка от функции называются частные производные от ее частных производных первого порядка .

Обозначение частных производных второго порядка:

.

Аналогично определяются и обозначаются частные производные третьих и высших порядков, например:

и т.д.

Так называемые «смешанные» производные, отличающиеся друг от друга лишь последовательностью дифференцирования, равны между собой, если они непрерывны, например:

.

Дифференциалом второго порядка от функции называется дифференциал от ее полного дифференциала, т.е. .

Аналогично определяются дифференциалы третьего и высших порядков: ; вообще

Если x и y – независимые переменные и функция имеет непрерывные частные производные, то дифференциалы высших порядков вычисляются по формулам:

5. Дифференцирование неявных функций.

Производная неявной функции , заданной с помощью уравнения , где дифференцируемая функция переменных и , может быть вычислена по формуле

при условии

Производные высших порядков неявной функции можно найти последовательным дифференцированием указанной формулы, рассматривая при этом как функцию от .

Аналогично, частные производные неявной функции двух переменных , заданной с помощью уравнения , где дифференцируемая функция переменных и , могут быть вычислены по формулам

при условии

6. Экстремум функции.

Функция имеет максимум (минимум) в точке , если значение функции в этой точке больше (меньше), чем ее значение в любой другой точке некоторой окрестности точки , т.е. [соответственно ] для всех точек , удовлетворяющих условию , где достаточно малое положительное число.

Максимум или минимум функции называется ее экстремумом. Точка , в которой функция имеет экстремум, называется точкой экстремума.

Если дифференцируемая функция достигает экстремума в точке , то ее частные производные первого порядка в этой точке равны нулю, т.е.

(необходимые условия экстремума).

Точки, в которых частные производные равны нулю, называются стационарными точками. Не всякая стационарная точка является точкой экстремума.

Пусть стационарная точка функции . Обозначим

и составим дискриминант Тогда:

а) если то функция имеет в точке экстремум, а именно максимум при и минимум при

б) если то в точке экстремума нет (достаточные условия наличия или отсутствия экстремума);

в) если то требуется дальнейшее исследование (сомнительный случай).

Пример 1. Дана функция Найти и .

Решение.

Пример 2. Дана функция Найти dz.

Решение.

Следовательно,

Пример 3. Вычислить приближенно исходя из значения функции при

Решение. Искомое число есть наращенное значение функции z при Найдем значение z при имеем

Находим приращение функции:

Следовательно,

Пример 4. Вычислить приближенно исходя из значения функции при .

Решение. Значение функции z при x=1, y=1 есть

Найдем приращение функции при

=

Следовательно,

Пример 5. Найти

Решение. Здесь

Найдем

Следовательно,

Пример 6. Найти и

Решение. Здесь =

Находим

Тогда

Пример 7. Найти экстремум функции

Решение. Находим частные производные первого порядка: Воспользовавшись необходимыми условиями экстремума, находим стационарные точки:

откуда

Находим значения частных производных второго порядка в точке M:

и составляем дискриминант Следовательно, в точке заданная функция имеет минимум. Значение функции в этой точке

Пример 6. Найти экстремум функции

Решение. Находим частные производные первого порядка:

Воспользовавшись необходимыми условиями экстремума, находим стационарные точки:

Отсюда x=21, y=20; стационарная точка

Найдем значения вторых производных в точке M:

Тогда .

Так как A<0, то в точке функция имеет максимум: