Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по ФОИ.doc
Скачиваний:
13
Добавлен:
09.11.2019
Размер:
1.28 Mб
Скачать

10.2. Детерминированное и стохастическое движения. Ограничение воздействия на макроуровне как фундаментальный закон природы

Возникает вопрос, какие же новые качества приобретают макросистемы при приближении к тепловому равновесию. В классической стратегии познания все частицы макросистемы совершают строго детерминированное движение по своим траекториям и понятие теплового равновесия отсутствует. Такому детерминированному движению обычно принято противопоставлять хаотическое движение.

Часто хаотичность движения возникает вследствие неточности задания начальных данных или условий контролируемого внешнего воздействия, при этом никакого теплового равновесия не возникает. Наблюдаемые на опыте характерные особенности теплового равновесия довольно трудно сочетать с законами классической физики. В них отсутствует объективный критерий, позволяющий отличить детерминированное движение микрочастиц, входящих в макросистему, от истинно хаотического движения, ведущего к тепловому равновесию. Чтобы подчеркнуть, что в природе такое различие явно наблюдается, вводится специальный термин для обозначения теплового хаотического движения – стохастическое (т.е. случайное, нерегулярное, непредсказуемое) движение. Поскольку это различие универсально, оно должно быть связано с каким-то общим свойством, присущим макромиру в целом, а не со свойствами конкретных макрообъектов или их взаимодействий, а именно степень неупорядоченности макросистемы

Такой мерой неупорядоченности, следуя Л. Больцману, принято считать физическую величину, называемую энтропией. Энтропия макросистемы, находящейся в определенном макросостоянии определяется логарифмом числа ее микросостояний , где  – число микросостояний, а kБ- постоянная Больцмана. В равновесной макросистеме энтропия принимает максимальное значение. Если все частицы движутся детерминировано, то макросистеме соответствует единственное микросостояние, так что ее энтропия равна нулю. Минимальное изменение энтропии (степени неупорядоченности) в макросистеме равно S = kБln2 или просто S = kБ, если энтропию выражать в единицах ln 2, как это принято в теории информации.

Таким образом, можно придти к выводу, что стохастическое движение макрообъекта можно отличить от детерминированного по наличию у него энтропии. Иначе говоря, природа устроена так, что в ней фиксировано минимальное изменение неупорядоченности макросистемы при тепловом воздействии.

Универсальной количественной характеристикой изменения неупорядоченности при тепловом воздействии служит постоянная Больцмана

Она характеризует приближение любого макрообъекта к тепловому равновесию и служит мерой минимального теплового воздействия на него. Универсальность постоянной Больцмана проявляется и в том, что через нее могут быть выражены любые физические характеристики, которые передаются от термостата к макрообъекту в процессе приближения к тепловому равновесию. Действительно, размерность постоянной Больцмана (или минимального изменения энтропии)

[kБ] = (10.2).

10.3. Макропараметры как характеристики объектов и их макросостояний в тепловом равновесии

Макропараметры – это характеристики объектов и их макросостояний в условиях теплового равновесия. Их разделяют на 2 класса:

Экстенсивныекоторые можно отнести как к объекту в целом, так и к его малым частям, причем для подобных характеристик выполняется требование аддитивности: А=Ai. Иначе говоря, это характеристики, в равной мере имеющие смысл как для микро-, так и для макрообъектов. К числу часто используемых макропараметров относится объем V и масса М макрообъекта, число N микрочастиц в нем, внутренняя энергия е и т.п.

Интенсивные – могут быть применены только к макрообъекту в целом, т.е. обладают свойством A=A1=.=Аn. Это в свою очередь означает, что подобные величины – это специфические характеристики макросостояния, в котором находится макрообъект. Они отражают условие теплового равновесия объекта и термостата и поэтому не зависят от конкретных свойств макрообъекта, т.е. являются универсальными. Среди таких макропараметров важнейшим является температура.

Контакты равновесия между макрообъектом и термостатом:

  1. Механический (силовой) контакт, связанный с тем, что над макрообъектом совершается работа с помощью макроскопических сил. Простейшим проявлением его может служить работа при расширении или сжатии газа. Условием равновесия при механическом контакте служит равенство давлений: P1 = Р2.

2. Тепловой (энергетический) контакт, связанный с тем, что происходит обмен энергией на граничной поверхности за счет беспорядочных ударов молекул.

3. Корпускулярный (диффузионный) контакт, когда макрообъект и термостат обмениваются отдельными микрочастицами. Условие равновесия при корпускулярном контакте имеет вид: 1 = 2, где величина  называется химическим потенциалом, который характеризует энергию, переносимую одной микрочастицей через границу между двумя макрообъектами при тепловом равновесии.

При любом макропроцессе должен выполняться фундаментальный закон сохранения энергии изолированной макросистемы. Если исключить поступательное и вращательное движения объекта как целого, выбрав подходящую систему отсчета, то энергия изолированной системы сводится только к его внутренней энергии: .

Величиной, сохраняющейся наряду с энергией в равновесных макропроцессах, является энтропия. Как уже отмечалось выше, она является мерой неупорядоченности макрообъекта. Через ее изменение S теплота Q записывается в виде Q=TS, так что теплота Q имеет смысл изменения внутренней энергии е макрообъекта при фиксированной температуре за счет изменения энтропии S, т.е. за счет изменения степени упорядоченности движения микрочастиц в макрообъекте.