
- •Конспект лекций по статистике
- •§5. Сезонные колебания, сезонные индексы и полное разложение дисперсии уровней динамического ряда 99
- •Глава 1. Статистика как наука
- •§1. Происхождение термина «статистика», его значение, особенности.
- •§2. Метод статистики
- •§3. Отрасли статистических наук
- •§4. Общая теория статистики как отрасль статистической науки.
- •§5. Статистический признак. Классификация.
- •§6. Понятие статистической закономерности.
- •Глава 2. Сбор статистической информации (теория статистического наблюдения)
- •§1. Понятие о статистическом наблюдении, этапы его проведения
- •§2. Программно-методологические вопросы статистического наблюдения
- •§3. Важнейшие организационные вопросы статистического наблюдения
- •§4. Основные организационные формы, виды и способы статистического наблюдения
- •§5. Точность наблюдения
- •Глава 3. Статистическая сводка и группировка §1. Задачи сводки и ее содержание
- •§2. Метод группировки и его место в системе статистических методов
- •§3. Виды статистических группировок
- •§4. Принципы построения статистических группировок и классификаций
- •§5. Ряды распределения и группировки
- •§5.1. Огива
- •§6. Сравнимость статистических группировок
- •§7. Метод группировок и многомерные классификации
- •§8. Группировки и классификации в практике статистики
- •Глава 4. Статистические таблицы §1. Элементы статистической таблицы
- •§2. Виды таблиц по подлежащему
- •§3. Виды таблиц по сказуемому
- •§4. Правила при построении таблиц
- •§5. Чтение и анализ таблицы
- •§6. Таблицы и матрицы
- •Глава 5. Статистические показатели
- •§1. Понятие, формы выражения и виды статистических показателей
- •§2. Абсолютные показатели
- •§3. Относительные показатели
- •§4. Средние показатели
- •Глава 6. Аналитическая статистика
- •§1. Структурные средние
- •1) Определение структурных средних в дискретных вариационных рядах
- •2) Определение структурных средних в интервальных вариационных рядах.
- •§2. Дисперсия
- •§4. Показатели вариации
- •§5. Относительные показатели вариации.
- •Глава 7. Корреляционно-регрессионный анализ
- •Изучение степени тесноты между двумя качественными признаками.
- •Глава 8. Выборочное наблюдение
- •Глава 9. Ряды динамики
- •Глава 10. Экономические индексы
- •§1. Понятие экономических индексов. Классификация индексов
- •§2. Индивидуальные и общие индексы
- •§3. Средние экономические индексы.
- •§4. Индексы средних величин.
- •Анализ взаимосвязей
- •Свойства коэффициента корреляции
- •Регрессионный анализ на основе комбинационной группировки
- •Оценка существенности параметров линейной регрессии и корреляции. F-критерий Фишера. Дисперсионный анализ
- •Ряды динамики Интерполяция и экстраполяция (прогнозирование) уровней ряда динамики
- •Экономические индексы
- •§1. Синтетическая и аналитическая концепции индексов
- •§2. Выбор базы и весов индексов
- •§3. Индексы пространственно-территориального сопоставления.
- •§4. Индексы Ласпейреса, Пааше, идеальный индекс Фишера
- •§5. Сезонные колебания, сезонные индексы и полное разложение дисперсии уровней динамического ряда
§3. Индексы пространственно-территориального сопоставления.
В статистической практике часто возникает потребность в сопоставлении уровней экономического явления в пространстве: по странам, экономическим районам, областям, т.е. в исчислении территориальных индексов. При построении территориальных индексов приходится решать вопрос, какие веса использовались при их исчислении.
В теории и практике статистики предлагаются различные методы построения территориальных индексов, в том числе метод стандартных весов. Этот метод заключается в том, что значения индексируемой величины взвешиваются не по весам какого-то одного региона, а по весам области, экономического района, республики, в которых находятся сравниваемые регионы.
§4. Индексы Ласпейреса, Пааше, идеальный индекс Фишера
Индекс Ласпейреса определяется путём взвешивания цен двух временных периодов по объёмам потребления базисного периода и отражает изменение стоимости потребительской корзины базисного периода, произошедшее за текущий период. Индекс рассчитывается как отношение потребительских расходов, обусловленных приобретением того же набора потребительских благ по текущим ценам (ΣQ0 * Pt), к расходам на приобретение потребительской корзины базисного периода (ΣQ0 * P0):
.
Отражая динамику цен по потребительской корзине базисного периода Q, индекс Ласпейреса не учитывает изменений в структуре потребления, которые возникают из-за изменения цен благ. Отражая лишь эффект дохода и игнорируя эффект замещения, этот индекс даёт завышенную оценку инфляции при росте цен и заниженную в случае их снижения.
Индекс Пааше — один из индексов цен, исчисляемых для характеристики изменения цен товаров. Определяется путём взвешивания цен двух временных периодов по объёмам потребления текущего периода и отражает изменение стоимости потребительской корзины текущего периода. Он рассчитывается как отношение текущих потребительских расходов к расходам на приобретение такого же ассортиментного набора в ценах базисного периода:
.
Отражая динамику цен по потребительской корзине текущего периода (Qt), индекс Пааше не в полной мере отражает эффект дохода. В результате получается завышенная оценка изменения цен при их снижении и заниженная в случае роста.
Индекс Фишера
С целью устранения недостатков, присущих индексам Пааше и Ласпейреса, рассчитывается их средняя геометрическая величина — индекс Фишера (IF):
.
Геометрическая форма индексов имеет принципиальный недостаток: она лишена конкретного экономического содержания.
Так, в отличие от агрегатного индекса Ласпейреса или Пааше разность между числителем и знаменателем не покажет никакой реальной экономии (или потерь) из-за изменения цен или физического объема продукции.
И Фишер назвал эту формулу расчета индекса идеальной формулой. Идеальность формулы заключается прежде всего в том, что индекс является обратимым во времени, т.е. при перестановке базисного и отчетного периодов полученный «обратный» индекс - это обратная величина величины первоначального индекса.
Индекс Фишера в силу сложности расчета и трудности экономической интерпретации на практике используется довольно редко. Чаще всего он применяется при исчислении индексов цен за длительный период времени для сглаживания тенденций в структуре и составе объема продукции, в которых происходят значительные изменения.