Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan-detchenya.docx
Скачиваний:
11
Добавлен:
27.09.2019
Размер:
695.49 Кб
Скачать

49. Понятие о n-кратных интегралах.

Понятие о несобственных кратных интегралов

Пусть — измеримое[1] множество n-мерного вещественного пространства, — функция на .

Разбиение множества — это набор попарно непересекающихся подмножеств , такое что .

Мелкость разбиения — это наибольший диаметр множеств .

Разбиение называется конечным, если является конечным множеством, и измеримым, если все его элементы — измеримые (в данном случае — по Жордану) множества.

Кратным (n-кратным) интегралом функции на множестве называется число (если оно существует), такое что, какой бы малой -окрестностью числа мы ни задались, всегда найдется такое разбиение множества и набор промежуточных точек, что сумма произведений значения функции в промежуточной точке разбиения на меру разбиения будет попадать в эту окрестность. Формально:

: :

Здесь — мера множества .

Это определение можно сформулировать в другой форме с использованием интегральных сумм. А именно, для данного разбиения и множества точек рассмотрим интегральную сумму

Кратным интегралом функции называют предел

если он существует. Предел берётся по множеству всех последовательностей разбиений, с мелкостью стремящейся к 0. Разумеется, это определение отличается от предыдущего, по сути, лишь используемым языком.

Интеграл обозначается следующим образом:

В векторном виде: ,

Либо ставят значок интеграла раз, записывают функцию и дифференциалов: .

Для двойного и тройного интегралов используются также обозначения и соответственно.

В современных математических и физических статьях многократное использование знака интеграла не применяется.

Такой кратный интеграл называется интегралом в собственном смысле.

В случае кратный интеграл совпадает с интегралом Римана.

48. Геометрические и физические приложения

кратных интегралов

1) Площадь плоской области S:

Пример 1.

Найти площадь фигуры D, ограниченной линиями

у = 2, у = 5.

Решение.

Эту площадь удобно вычислять, считая у внешней переменной. Тогда границы области задаются уравнениями и

где вычисляется с помощью интегрирования по частям:

Следовательно,

2) Объем цилиндроида, то есть тела, ограниченного частью поверхности S: z = f(x,y) , ограниченной контуром L, проекцией D этой поверхности на плоскость Оху и отрезками, параллельными оси Оz и соединяющими каждую точку контура L с соответствующей точкой плоскости Оху:

(12)

3) Площадь части криволинейной поверхности S, заданной уравнением z = f(x,y), ограниченной контуром L:

(13)

где D – проекция S на плоскость Оху.

4) Момент инерции относительно начала координат О материальной плоской фигуры D:

(14)

Пример 2.

Найти момент инерции однородной круглой пластинки

(xa)2 + (yb)2 < 4b2 относительно начала координат.

Решение.

В силу однородности пластинки положим ее плотность γ(х,у) = 1.

Центр круга расположен в точке C(a, b), а его радиус равен 2b.

Уравнения границ пластинки имеют вид

Вычислим каждый из полученных интегралов отдельно.

Для вычисления интеграла I1 сделаем замену:

при x = a – 2b при x = a + 2b

Для вычисления интеграла I2 преобразуем подынтегральную функцию по формуле разности кубов:

Тогда

Следовательно,

Моменты инерции фигуры D относительно осей Ох и Оу:

(15)

5) Масса плоской фигуры D переменной поверхностной плотности γ = γ (х, у):

(16)

Пример 3.

Найти массу пластинки D плотности γ = ух3, если

Решение.

Координаты центра масс плоской фигуры переменной поверхностной плотности γ = γ (х, у):

(17)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]