
- •2. Четвертичная структура белков. Особенности строения и функционирования олигомерных белков на примере гемсодержащих белков - гемоглобина и миоглобина.
- •3. Физико-химические свойства белков и их классификация. Потребность в белках. Азотистый баланс. Белковая недостаточность. Квашиокор.
- •5. Основные свойства белковых фракций крови и значение их определения для диагностики. Методы исследования. Эмбриоспецифические белки и их значение. Энзимодиагностика.
- •6. Глобулярные и фибриллярные белки, простые и сложные. Представления о структуре фибриллярных белков. Коллаген как основной белок соединительной ткани.
- •7. Хромопротеины, важнейшие представители, строение и роль в организме. Типы гемоглобинов и их изменение в процессе онтогенеза. Гемоглобинопатии.
- •9. Вторичная структура днк и рнк. Комплементарность азотистыx оснований.
- •10. Денатурация и ренативация днк. Гибридизация днк-днк и днк-рнк.
- •13. Витамин b1, его строение и медико-биологическое значение.
- •14. Тиаминпирофосфат, его строение и биологическая роль.
- •15. Биотин и витамин в12. Роль этих витаминов в биосинтезах.
- •Рекомендуемая суточная норма потребления
- •19. Биотин, его химическое строение и роль в клеточном метаболизме.
- •23.Фолиевая кислота, ее строение и биологическая роль.
- •Симптомы дефицита
- •25. Роль биотина и витамина b12 в клеточном метаболизме.
- •30. Витамин а, его химическое строение и роль в обмене веществ клеток. Основные пищевые источники витамина а.
- •32.Аскорбиновая кислота. Строение и физиологические функции.
- •33. Токоферолы, их строение и биологическая роль. Представление об антиоксидантах.
- •34. Витамины е и к, их химическое строение и медико-биологическое значение.
- •35. История открытия и изучения ферментов. Особенности ферментативного катализа.
- •37. Современные представления о механизмах действия ферментов. Мультиферментные комплексы на примере структуры синтазы жирных кислот.
- •58. Окислительное декарбоксилирование пвк. Химизм процесса и его биологическое значение
58. Окислительное декарбоксилирование пвк. Химизм процесса и его биологическое значение
Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс».
На I стадии этого процесса пируват (рис. 10.8) теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E1). На II стадии оксиэтильная группа комплекса E1–ТПФ–СНОН–СН3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидроли-поилацетилтрансферазой (Е2). Этот фермент катализирует III стадию – перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением.
На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид–Е2. При участии фермента дигидролипоилдегидрогеназы (Е3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН2 дигидро-липоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н+.
Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нем принимают участие (в составе сложного мультиферментного комплекса) 3 фермента (пируватдегидрогеназа, ди-гидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 кофер-ментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E1, ли-поамид-Е2 и ФАД-Е3), а два – легко диссоциируют (HS-KoA и НАД).Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс».
На I стадии этого процесса пируват (рис. 10.8) теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E1). На II стадии оксиэтильная группа комплекса E1–ТПФ–СНОН–СН3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидроли-поилацетилтрансферазой (Е2). Этот фермент катализирует III стадию – перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением.
На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид–Е2. При участии фермента дигидролипоилдегидрогеназы (Е3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН2 дигидро-липоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н+.
Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нем принимают участие (в составе сложного мультиферментного комплекса) 3 фермента (пируватдегидрогеназа, ди-гидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 кофер-ментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E1, ли-поамид-Е2 и ФАД-Е3), а два – легко диссоциируют (HS-KoA и НАД).
Е1 - пируватдегидрогеназа; Е2 - ди-гидролипоилацетилтрансфсраза; Е3 -дигидролипоилдегидрогеназа;
Все эти ферменты, имеющие субъединичное строение, и коферменты организованы в единый комплекс. Поэтому промежуточные продукты способны быстро взаимодействовать друг с другом. Показано, что составляющие комплекс полипептидные цепи субъединиц дигидролипоил-ацетилтрансферазы составляют как бы ядро комплекса, вокруг которого расположены пируватдегидрогеназа и дигидролипоилдегидрогеназа. Принято считать, что нативный ферментный комплекс образуется путем самосборки.
Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом:
Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2.
Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.Образовавшийся в процессе окислительного декарбоксилирования аце-тил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбо-ксилирование пирувата, происходит в митохондриях клеток.№61 Токсичность кислорода.Среда с сод-м кислорода явл. агрессивной по отнош. к орг. формам жизни, что связано с обр-м активных форм О2 в процессе жизнедеят. или под дейст. различ. форм ионизир. излучения. Фактор, опр-й жизнеспос. орг-ма в среде ккислорода - наличие у него функциональной антиоксидантной системы, спос. к элиминации . Супероксиддисмутаза элим. супероксид-анион, каталаза элим. перекись водорода, цитохром - ферм., отвеч за перенос эл. от НАДН к О2. Дполнит. защита обеспеч. синтезом или накоплением низкомолек. антиоксидантов вит. А, С, Е. лим. к-ты. Осн. субстратом перикисного окисления липидов явл. полиненасыщенные цепи жирных к-т, входящих в сост. клеточ. мембр., липопротеинов. Их атака кислородными радикалами приводит к обр-ю гидрофобных радикалов, взаимодейст. др. с др. Антиоксиданты - ингибиторы окисления прир. или синтетич. в-ва. спос. тормозить окисление. Мех-м действия сост. в обрыве реакционных цепей, молек. антиокс. взаимод с акт. радик. с обр. малоакт. радик., уменьш скорость окисления
№65 Гормоны - вещ-ва органич. природы, выраб. в специализ. кл. желез внутр. секреции, поступ. в кровь и оказ. регулир-ее влияние на обмен в-в и физиологич. ф-ции. гормоны занимают промежут. звено в регуляции процессов обмена между н.с. и действием ферментов. По механизму действия гормоны можно разделить на 2 группы. К 1ой группе относят гормоны, взаимод с мембранными рецепторами (пептидные гормоны, адреналин, а также г. местного действия - цитокины, эйкозаноиды). 2ая группа включает г., взаимод-е с внутриклеточными рецепторами. Гормоны, связываясь с рецепторами на пов-ти клеточной мембраны, образуют комплекс гормон-рецептор, к-ый трансформирует сигнал первич. посредника в изменение концентрации вторич. посред-в (цАМФ, цГМФ, ИФ3, ДАТ, Са2+, NO). Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействованы: 1) рецептор гормона; 2) фермент аденилатциклаза, выполняющая функцию синтеза цАМФ; 3) G-белок, осуществляющий связь между аденилатциклазой и рецеп.; 4) цАМФ-зависимая протеинкиназа, катализ-ая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность; 5) фосфодиэстераза, которая вызывает распад цАМФ и тем самым прекращает действие сигнала.Связ-е Г. с β-адренергическим рецептором приводит к струк. изм. внутриклет. домена рецептора, что в свою очередь обесп. взаимодействие рецеп. со 2м белком сигнального пути – ГТФ-связывающим(G-белком). Гормонрецептор. компл. переводит G-белок в активное состояние, перемещ. к аденилатциклазе и акт-т ее. Аденилатциклаза катализирует реакцию синтеза цАМФ из АТФ. Протеинкиназа – это внутриклеточный фермент, через который цАМФ реализует свой эффект. Протеинкиназа может существовать в 2 формах. В отсут. цАМФ прот-за представлена в виде тетрамерного комплекса, сост. из 2 каталитических и двух регуляторных субъед.; в этой форме фермент неактивен. В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну регулят. субъединицу и две свободные каталитические субъед.; последние обладают ферментативной акт-тью, катализируя фосфорилирование белков и ферментов, изменяя клеточную акт-ть. Ряд Г. оказ. тормозящий эфф. на аденилатциклазу, соответственно снижая уровень цАМФ и фосфорилирование белков.Реализация эффекта после проникновения гормона внутрь клетки - рецепторы для Г. нах. в цитоплазме клетки. Г. этого механизма действия в силу своей липофильности легко проникают через мембрану внутрь клетки-мишени и связ. в ее цитоплазме специфическими белками-рецепторами. Гормон-рецепторный комплекс входит в клеточное ядро. В ядре комплекс распадается, и Г. взаимод. с опр. уч-ми ядерной ДНК, обр-ся особая матрич. РНК. М-РНК выходит из ядра и спос. синтезу на рибосомах белка или белка-фермента (стероидные гормоны, гормоны щит. ж-зы). Для их действия характерна глубокая и длительная перестройка клеточного метаболизма.Возд. некот. белково-пептидный гормонов выз. усленное поступление ионов Са в цитоплазму из митох. или через кальциевые каналы. Са взаимод. с кальмодуллином. возн. комплекс., активир. протеинкиназы. фосфолир-е кл. белки.
№66 Г. передней доли гипофиза.В перед. доле выраб. в основном белковые и полипептидные Г., называемые тропнымиАдренокортикотропный гормон (АКТГ), Влияние выраж. на пучковую зону --> увелич. обр. глюкокортикоидов. Стимул. липолиза (мобилизует жиры из жировых депо и спос. ок-ию жиров), увелич. секр. инсулина и соматотропина, накоплении гликогена в кл. мыш. тк., гипогликемии, усилении пигм. за счет действия на пигментные клетки меланофоры. Молекула АКТГ сод. 39 аминокислотных ост. Сод. 2 акт. уч-ка цепи, 1 отв. за связ. с соотв. рецептором, другой - за гормон. эфф. АКТГ взаимод. с рецеп. кл. мембр., сигнал перед. на ферм. аденилатциклазу, кат. распад АТФ и обр-е цАМФ, к-й акт-т протеинкиназу. Пр-за фосфолирует холинэстеразу, превращ-ю эфиры холестерина в своб холестерин, который поступ. в митох надпоч., где сод-ся все ферм., катализ -е превращ. холестерина в кортикостероиды. Соматотропный гормон (СТГ)сост. из 191 аминок-ты и содержит 2 дисульфидные связи, N и С концевые аминокислоты предст. фенилаланином. Влияет на все клетки организма. определяя интенс обм углеводов, белков. липидов и мин. в-в. Усил. биосинтез белка, ДНК, РНК, гликогена, спос. мобилиз. жиров из депо, распаду высших жир. к-т, глюкозы в тк. Стимул. рост скелета, Биол. эфф. осущ. через соматомедин - сульфирующий, или тимидиловый фактор, стимулир. вкл. сульфата в хрящи, тимидина - в ДНК. уридина - в РНК. пролина в коллаген. Лактотропный гормонСтимулир. лакт-ю и рост. мол. ж-з, стим. рост. внут. орг.. секр. желтого тела, ок. ренотропное, эритропоэт., гиперглик. дейст. 199 аминок-т, 3 дисульфид. св.Тиреотропный гормон (ТТГ)слож. гликопротеид, сост. из 96 ам-тыи субъед.(сод 112 ам-ты), контр. ф-цию и разв. щит. ж-зы. Гонадотропные гормоныфолликулостимулир. и лютеинизир. Рег. стероидо - и гаметогенез в пол. ж-зах. Гликопротеины. Лютропин (89 ам-т и 2 углевод. радик.)и -субъед. Липотропные гормоны Жиромобил. дейст.. кортикотроп., меланоцитстимул., гипокальциемич., повыш. ск-ти утилиз. глюкозы в тк. протеинкиназа фосфолир. неактивную тиацил-глицерол липазу, расщепл-ю нейтр. жиры на диацилглицерол и выс. жир. к-ту. эти эфф. осущ. прод-ми распада - липотропина. 91 ам-та. Явл. предш. метионин-энкефалин, лейци-энкефалин, эндорфин.
№67 Г. задней доли гипофиза. Вазопрессин и окситоцин отклад. в зад. доле. Нонапептиды. 9 аминокислот. Окситоцин стимул. сокр. гл. муск. матки, мыш. альвеол, вазопрессин стим. сокращ. глад. мыш. волокон сосудов. регул. вод. обм. контр. осмот. давление плазмы.
№68 Кортикостероиды. Глюкокортикоиды(влияние на обм. углеводов, белков, жиров и нукл. к-т) и минералокортикоиды(вл. на обм. солей и воды). В основе лежит кольцевая сист. циклопентанпергидрофенантрена. 21 углерод. атом. двойная св. между 4 и 5 ат, кетогруппа у 3го. боковая цепь -СО-СН2-ОН у 17го. Прегнан, кортикостерон. кортизол. кортизон, дезоксикортикостерон, альдостерон. Предш. явл. холестерол. Горм. проник. через клет. мембр., обр. стероидорецепт. компл. в цитоплазме. транспорт в ядро и связывание с хроматином. Гл-ды прояв. катаб. дейст., сниж прониц. клет. мембр., тормож. поглощ. глюкозы и ам-т, в печени оказ противоп. дейст., сниж синт гликогена в м-цах, торм. ок-е глюкозы, усил. распада жиров. Мин-ды спос. удерж. ионов Na, Cl., вывед. К., за счет усил реабс. в кан. почек.
№70 Эстрогены
Эстрадиол синт-ся в фоллик. Сост. из 18 ат. углерода. предш. явл. холестерин. Плацента также продуц эстр. Прогестерон сост из 18 ат. С. Эти горм выз. разв. вторич. пол. признаков., прог. подгот. слиз. об. матки к имплант. яйцекл., сохр. берем., торм. овуляцию и стимул. разв. тк. молоч. ж-зы. Эстрогены оказ. анаболич. дейст., стимул. синтез белка. Связ. с внутриклет. рецеп. и регулир. транскрип. генов подобно стер. горм.
№ 71 АндрогеныПредш. - холестерол, к-й поступ. из плазмы в иде ЛПНП, либо синт. в пол. ж-за из ацетил_КоА. У эмб. под дейст. андрогенов из вольфова протока обр. придаток яичка. семявыносящ. проток и семенной пузырек. У плода муж. пола происх маскулм=инизация мозга. Стимул. клет. деление, стим. формир. вторич. пол. призн. Тестостерон и дигидротестостерон.№74 Инсулин.Полипептид. сост. из 2 полипепт. цепей. Цепь А сод. 21 ам-тных ост., цепь В - 30 аминок. 2 цепи соед. между собой дисульфидными мостиками, дисульф. мостик. внутри а цепи соед. 6 и 11 ост. в А цепи. Инс. нах. в своб. и в связанной с белками плазмы крови формах. Своб. влияет на мет-м всех инсулинчувствит. тк., а связанный - на жировую ткань. Менее чув. к инсулину - печень, нечув. - нервная тк. В тк. обнаружены мембранные рецепторы к Инс. гликопротеидной природы. Когда Инс. соединяется с рецептором, комплекс гормон-рецептор обладает спос-тью резко изм. проницаемость клеточ. мембр. для глюкозы, аминок-т. ионов Са, К, Na/ Сущ. 2 мех-ма стимул. транспорта глюкозы внутрь клетки-мишени:1. Инс. взаимод. с белками, формир. глюкозные каналы в мембр., при этом каналы открываются и глюкоза свободно входит внутрь кл. 2. Косвенный путь: Инс. передает сигнал на мембр. рецепторы, а далее этот сигнал идет на внутрикл. ферм. - гуанилатциклазу. Благодаря ей сигнал поступает на цГМФ. далее цГМФ фосфолирует внутриклеточные белки и в рез-те этого мембр. становится проницаемой для глюкозы. аминок-т, ионов. Глюкоза встает на синтез гликогена, усил. синтез триацилглицеридов, синт. белка. синт ДНК, ее репликация и транскрипция РНК, что прив. к ускор. росту кл. и их ускор. диффер. тормозится гликогенолиз и глюконеогенез. Инс. выз. сниж. конц. глюкозы. аминок-т, жир. к-т. глицерина, ионов К в крови. Уменьш. потеря с мочой аминок-т. ионнов К.Глюкагон - одноцепоч. полипептид. сост. из 29 аминок-т. Глюкагон связ. с мембр. рецепторами тканей-мишеней. Сигнал, к-й глюкагон передает на мембр. рецептор, далее идет в клеточ. фермент аденилатциклазу. Далее сигнал перед. на цАМФ, потом на ферм. фосфорилазу, к-я выз-т мобилизацию гликогена в печени и распад триацилглицеридов в жировой ткани. Повыш. ур. глюкозы, жир. к-т. глицерина в крови, обр-е большого кол-ва ацетил-КоА. В печени глюкагон угнет. синтез белка на рибосомах и облегчает распад белков. Обр-е аминок-ты идут на глюконеогенез и синтез мочевины.Общ. фундамент. мех-мом, посредством к-го реализ. биологич. эфф. вторич. посред. внутри кл. явл. процесс фосфолирования-дефосфолирования белков при участии широкого разнообразия протеинкиназ, катализ. транспорт концевой гр. от АТФ на ОН-гр. серина и треонина, тирозина белков-мишеней. Процесс фосф-я предст. собой важнейшую посттрансляционную химич. модифик. белк. молек. Изм их струк. и ф-ции, актив. или ингибир. их каталитич. св-в. опр. скорость хим. р-ций и функ. акт-ть кл.№75 Гормоны мозгового в-ва надпочечниковАдреналин и норадреналин. Предш. явл. тирозин, к-ый подвергается процессам гидроксилирования, декарбоксилирования и метилирования. фенилаланин - тирозин - ДОФА - дофамин - норадреналин - адреналин.Оказ. мощное сосудосуж. действие, повыш. АД, повыш. ур. глюкозы в крови адреналином, ускорение распада гликогена в печени под дейст. фосфорилазы. Накопление гексозофосфатов в тканях, уменьш. конц. неогр. фосфата, повыш. ур. ненасыщ. жир. к-т. в плазме крови. Торможение окисления глюкозы в тк. под дейст. адреналина. Все рецеп. катехоламинов - гликопротеины.ю к-е явл. продуктами разных генов, различ. сродством к агонистам и антагонистам и передают сигналы в кл. с пом вторич. посред. Адр-н взаимод с -и рецеп. Взаимод с рецеп активирует аденилатциклазу, а связ. с а2-рецептором ее ингибирует. При актив-ции а1 - рецеп. происх. активация фосфолипазы С и стимулир. инозитолфосфатный путь передачи сигн.
№77 Гормоны щитовидной железы. Тироксин и трийодтиронин. явл. производным L-тиронина. к-й синт-ся из L-тирозина. Тироксин в 4 положениях кольцевой структуры йод. Биосинт. тироксина в фоллик. щит. ж-зы происх. путем конденсации 2 ост. молек. дийодтирозина, вх. в сост. тиреоглобулина - гликопротеина, сод. около 5 тыс. аминокислот ост. Йодирование тирозина осущ. путем ферментат окисления йодидов.Регулируют скорость основного обмена, рост и диффер. тканей, обмен белков, липидов, углеводов, липидов, водно-электролит. обм., деят-ть цнс, пищ. тракта. гемопоэз, ф-цию ссс, потреб. в витаминах, сопрот. орг-ма инфекциям. Спциф. рецеп. обесп. транспорт тиреоидных горм. в ядро и взаимод. со струк. генами, в рез-те чего увелич. синтез ферментов. регулир. ск-ть ок-восст. процессов.Кальцитонин - гормон пептидной природы. 32 ам-т. Сод. дисульфид. мостик между 1 и 7 аминокислот. ост. Подавляет резорбтивных процессов в костной ткани, выз. гипокальциемию и гипофосфатемию. Гипотиреоз разв. вслед. недост. йодтиронинов, вслед. недост. ф-ции щит. ж-зы, заб гипофиза и гипоталамуса. Мекседема обусл. избыточным накоплением глюкозаминогликанов и воды. В подкож кл накапл. глюкуроновая к-та. Избыт глик-ов выз. изм-е коллоидной струк. межклет. матрикса, усил. его гидрофильность и связ. ионы Nа. сниж. осн. обмен, ск-ти гликолиза, мобилиз. гликогена и жиров. потреб. глюкозы м-цами, сниж. теплопрод. Эндемический зоб возн. при недост. поступ. йода в орг., уменьш. продукция трийодтиронинов, усил-ся синтез ТТГ, компенсатор. увелич. щит. ж-зы. Гипертиреоз возн влед повыш. продукции трийодтиронинов. Увелич. осн. обмен, усил. пр-сы катаболизма. Б-нь Грейва возн. в рез-те обр-я АТ к тиреоидным АГ. IgG имитирует действие тиреотропина, взаимод. с рецеп. на мембране кл. щит. ж-зы, что прив. к разрастанию тк. щит. ж-зы и неконтролир. продук. Т3 и Т4. ТТГ снижен.
№78 Циклические нуклеотиды. Нуклеотиды, в молек. к-х остаток фосфорной к-ты, связываясь с углеродными атомами рибозы в 5' и 3' положениях, обр. кольцо; универсальные регуляторы биохим. пр-в в живых кл. цАМФ и цГМФ обл. высокой биологической акт-тью в регул. процессов обм.. выполняя роль медиатора внеклеточ. сигналов в кл. Аденилатцилаза катализирует превращение АТФ в цАМФ. Гуанилат циклаза кат. превр. ГТФ в цГМФ.
№80 Гетерополисахариды - полисахариды, в струк. к-ых характерно наличие 2 или более типов мономерных звеньев. Важн. предст. гетерополисахаридов в органах и тк. – гликозаминогликаны (мукополисахариды). Они состоят из цепей сложных углеводов, содержащих аминосахара и уроновые кислоты. Гиалуроновая к-та свзя. воду и скрепляет кл. между собой, входит в состав синовиальной жид-ти, стекловидного тела глаза. Хондроэтинсульфат А явл. главной составляющей хрящевой тк., спос. накапливать Са. Гепарин сульфат обнаружен в печени, м-цах, тимусе, селезенке. легких, сердце,ю кров. русле. накапл. в туч. кл. тормозит свертывание крови. Гликозаминогликаны значит. различ. по размерам, их молеку. массы в пределах от 104 Да для гепарина до 107 Да для гиалуроновой к-ты. Если цепи гликозаминогликана присоед. к белковой молек., соответствующее соединение называют протеогликаном. Протеогл. на 90-95% сост. из углеводов, по своей струк нап еж. свернуты в беспорядочный клубок, обр. домены, которые проник. др. в др., переплетаются и возн. единая струк., формирующая тканевой каркас. запасается большое кол-во воды, поддерж тургор тк.. связ Са, препят. проник. патогенной микрофлоры. Гомополисахариды - моносахариды, связанные между собой гликозидной связью, обр. цепи. струк. и резервные. Крахмал предст. собой смесь линейного гомополисах - амилозы и разветвленного - амилопектина. Постр. из ост. D-глюкозы, соед. а 1-> 4 связями, а в точках ветвления 1->6 связями.Явл. важным пищевым углеводом.Гликоген - главный резервный полисахарид высш. жив. и чел. Постр. из ост. D-глюкозы. Постр. из ветвящ. полиглюкозидных цепей, а 1->4 связи, в точках ветвления 1-->6 связи. Хитин - струк. полисах. беспозв. жив.Целлюлоза - полисах. растений. Спсо. формир. кала.Синтез гетерополисахаридов происходит при участии гликозилтрансфераз. Углеводная часть гликолипидов и гликопротеинов может быть предст. моносах., а также полисах. Чаще всего в углеводной части встреч. галактоза, манноза, глюкоза, фукоза, N-ацетилгалактозамин, N-аце-тилглюкозамин, сиаловая кислота. Наиболее распространенные гликолипиды — это гликоцерамиды (гликосфин-голипиды), представляющие собой производные церамида. В частности, антигены А и В мембран эритроцитов являются гликоцерамидами.В гликопротеинах углеводная часть может быть связана с белком за счет гидроксильных групп серина или треонина (О-гликозидная связь) или за счет амидной группы аспарагина (N-гликозидная связь). С одной белковой молекулой может быть связано разное число углеводных цепей — от одной до нескольких десятков, и цепи могут иметь разное строение. Гликопротеиды встречаются в клеточ. оболочках, белковых фракциях крови, ферментах. внут. факторе Касла. Углеводная часть гликолипидов и гликопротеинов плазматической мембраны всегда нах. на наруж. пов-ти мембраны, контактируя с межклет. в-вом. Углеводы плазматической мембраны вып. роль специфич. лигандов для белков. Они обр. участки узнавания, к к-м присоед. опр. белки; присоедин-ся белок может изм. функц. сост. кл.Полисахариды клеточной мембраны наряду с белками выполняют роль антигенов при развитии клеточного иммунитета.
№81 Глюкоза - важнейший метаболит углеводного обмена превращение глюкозы в организме.
№84 Галактоземия - возникает при нарушении обмена галактозы в рез-те недостатка фермента галактоза-1-фосфатуридилтрансферазы. Проявл. у н/р, питающихся материнским молоком. ранние симптомы - рвота, диарея, дегидратация. уменьш. массы тела. В крови, моче и тканях повышается конц-ция галактозы и галактозо-1-фосфата. В хруст. глаза галактоза восст. альдоредуктазой с образованием спирта галактитола, который накапл. в стекловидном теле глаза, связ. большое кол-во воды. происх. чрезмерная гидратация хрусталика, разв. катаракта. Накопление галактозо-1-фосфата в печени приводит к токсич. возд. на гепатоциты. возн. гепатомегалия и жировая дистрофия печени. в почках накопл. гал-1-фосфата и галактитола прив. к наруш. работы. Наруш. отмеч. также в кл. гол. мозга. В тяж. случаях набл. отек мозга, задержка умст. развития. Гал-мия м.б. вызвана деф. фермента галактокиназы. При этом возн. катаракта но не страдает печень, почки и головной мозг. Набл. присут. галактозы в моче. Непереносимость фруктозы. Недостаток фруктокиназы клин. не проявляется. Фруктоза накапливается в крови и выделяется с мочой. где ее можно обнаружить лаб. методами.Недостаток фруктозо-1-фосфорилазы может возн. при генетич. дефекте. Пока реб. питается груд. молоком., клинич. симпт. не прояв. При изм рациона после приема пищи появ. рвота, боли в животе, понос, сниж. уровень сахара в крови, может появ. кома. у детей, прод. принимать продукты. сод. фруктозу, разв. наруш. ф-ции печеи, почек. Непереносимость дисахаридов — наслед. или приобр. недостат-ть акт-ти дисахаридаз, обусл-щая наруш. расщепления и всас. дисахаридов; выз-т непереносимость лактозы, сахарозы и/или мальтозы; проявл. расстр. пищевар. в виде хронич. фермент. диспепсии.Недост. лактазы проявл. неперенос. материнского и коровьего молока, богатого лактозой. Первич. (врождённая) неперенос. лактозы — сниж. уровня фермента лактазы, Вторич. неперен. лактозы может возникнуть при забол., сопров. пораж. слизистой об-ки киш. (диарея, лямблиоз, резекция кишечника и др.). При вскарм. молоком у ребёнка появл. кишеч. колики, метеоризм, упорная диарея, разв. гипотрофия. Испраж. водянистые, пенистые, с кислой р-цией. Возм. тяжёлое течение с сепсисом, поражением почек и печени. Безмолочная диета или молоко с исключением лактозы.Недост. сахаразы — неперен. сахарозы, клин. проявляется диареей после включения в пищу сахарозы, клин. картина зависит от кол-ва принятого дисахарида. Испр. водянистые, пенистые, с высоким сод-м молоч к-ты и летучих жирных кислот. Набл. рвота. Гипотрофия, повыш. t .
№85 Аэробный распад глюкозы. Физиологическое значение аэробного распада глюкозы. Использование глюкозы для синтеза жиров в печени и в жировой ткани. Аэробный гликолиз - процесс окисления глюкозы с образованием двух молекул пирувата; общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитратом цикле. Главный путь утилизации глюкозы. При расщ. 1 молекулы глюкозы в тканях синтезируется 38 молекул АТФ. Часть углеводов, поступ. с пищей, превращ. в орг. в жиры, особенно если количество углеводов превышает необх. для возобновления запасов гликогена в печени и мышцах. Глюкоза служит источником ацетил-КоА, из которого синтезируются жирные к-ты. Необходимый для восстановительных реакций НАДФН поставляется за счет окисления глюкозы в пентозофосфатном пути, а также за счет дегидрирования яблочной кислоты НАДФ-зависимой малатдегидрогеназой. Глицерол-3-фосфат получается путем восстановления диоксиацетонфосфата — промежуточного продукта гликолиза. Синтез жиров из углеводов наиболее активно происходит в печени, жировой ткани и лактирующих молочных железах.
№87 Синтез гликогена и гликогенолиз. При полимеризации глюкозы сниж. растворимость образующейся молек. гликогена и её влияние на осмот. давление в кл. Это обстоятельство объясняет, почему в клетке депонируется гликоген, а не свободная глюкоза. Распад гликогена печени служит в основном для поддерж. уровня глюкозы в крови в постабсорбтивном периоде. Гликоген м-ц служит резервом глюкозы - источника энергии при мыш. сокращ. Мыш. гликоген не исп. для поддерж. уровня глюкозы в крови.Синтез.Глюкоза, поступ. в кл., фосфорилируется при участии АТФ. Затем глюкозо-6-фосфат превращ. в глюкозо-1-фосфат под действием фермента фосфоглюкомутазы. Чтобы синтез гликогена был термодинамически необратимым, необходима дополнительная стадия образования уридинди-фосфатглюкозы из УТФ и глюкозо-1-фосфата. Фермент, катализирующий эту реакцию, - УДФ-глюкопирофосфорилаза. Образованная УДФ-глюкоза далее используется как донор остатка глюкозы при синтезе гликогена. Эту реакцию катализирует фермент гликогенсинтаза (глюкозилтрансфераза). Так как гликоген в клетке никогда не расщеп. полностью, синтез гликогена осущ. путём удлинения уже имеющейся молекулы полисах. К "затравке" последовательно присоед. молекулы глюкозы. Разветвлённая структура гликогена образуется при участии амило-1,4 →1,6-глюкозилтрансферазы. Распад. Распад гликогена происх. путём послед. отщепления ост. глюкозы в виде глюкозо-1-фосфата. Гликозидная связь расщепляется с исп. неорганического фосфата, процесс называется фосфоролизом, а фермент гликогенфосфорилазой.Гликогенфосфорилаза расщепляет только α-1,4-гликозидные связи. Продукт дейст. гликогенфосфорилазы - глюкозо-1-фосфат, изомеризуется в глюкозо-6-фосфат фосфоглюкомутазой. Далее глюкозо-6-фосфат включ. в пр-с катаболизма или др. метаболич. пути.В печени (но не в мышцах) глюкозо-6-фосфат может гидролизоваться с образованием глюкозы, которая выделяется в кровь. Эту реакцию катализирует фермент глюкозо-6-фосфатаза.
№88 Роль УТФ в синтезе полисахаридов. В силу обратимости реакции глюкозо-6-фосфат ↔ глюкозо-1-фосфат синтез гликогена из глюкозо-1-фосфата и его распад оказались бы также обратимыми и поэтому неконтролируемыми. Чтобы синтез гликогена был термодинам. необратимым, необходима дополнительная стадия образования уридиндифосфатглюкозы из УТФ и глюкозо-1-фосфата. Нуклеотидная часть УДФ-глюкозы играет существенную роль в действии гликоген синтазы, выполняя функцию "рукоятки", при помощи которой фермент располагает глюкозу в полисахаридной цепи в нужном положении. Кроме того, нуклеотидная часть УДФ-глюкозы, по-видимому, необходима для узнавания субстрата при катализе. Регуляция синтеза и распада.В мышцах нет рецепторов глюкагона, и распад гликогена стимулируется главным образом ионами Са2+ и адреналином. Пр-сс нач. с возникновения стрессовой ситуации, связанной с необходимостью напряженной работы. В отв. на сигнал цнс из мозгового вещества надпочечников секретируется в кровь адреналин, который взаимод. с рецепторами мембран мыш. кл., и запускаются каскады реакций, аденилатциклазный, инозитолфосфатный, связ. с кальмодулином.Ключевую роль в рег. синтеза и распада гликогена играют р-ции фосфорилирования-дефосфорилирования гликогенсинтетазы и гликогенфосфорилазы. Глюкагон передает сигнал в кл. через аденилатциклазную сист, в кл. актив. протеинкиназа А. Протеинкиназа А и инактивирует гликогенсинтетазу: синтез гликогена прекращается. Протеинкиназа А активирует через киназу гликогенфосфорилазы гликогенфосфорилазу. Т. о., синтез гликогена в клетке заторможен, но происходит его распад. Инсулин активирует тирозинкиназу своего рецептора, и далее следует каскад реакций, в рез-те к-го фосфорилируется и активируется печеночная протеинфосфатаза гранул гликогена 1. Затем ПфГр-1 дефос-активирует гликогенсинтетазу — становится возможным синтез гликогена, и инактивирует киназу гликогенфосфорилазы. Распад гликогена прекращ.
№90, 91 Гликолиз, биологическое значание. послед. р-ций в анаэробных условиях. КПД кликолиза.Послед-ть фермент. р-ций, приводящих к превращ. глюкозы в ПВК с образованием АТФ.Анаэр. гликолиз – фермент. процесс распада глюкозы в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. Биологическое значение процесса гликолиза заключается в образовании богатых энергией фосфорных соединений. В гексокиназной и фосфофруктокиназной реакциях гликолиза затрачиваются 2 молекулы АТФ. На последующих образуются 4 АТФ (фосфоглицераткиназная и пируваткиназная реакции). Т. о., энергетическая эффективность гликолиза в анаэробных условиях составляет 2 АТФ на 1 молек. глюкозы. В пр-е 1ой минуты работы благодаря анаэр. пр-су достигается гораздо большая мощность, чем при дальнейшей работе. Эритроциты вообще не имеют митохондрий, и их потребность в АТФ целиком удовлетворяется за счет анаэр. гл-за. Интенс. гл-из хар-н также для клеток злокач. опухолей. Протекает в гиалоплазме кл. 1ой фермент. р-цией гликолиза явл. фосфорилирование, катализируется гексокиназой. 2ой р-цией явл. превращ. глюкозо-6-фос-фата под действием глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат. 3я р-ция катализ. фосфофруктокиназой; фруктозо-6-фосфат фосфорилируется за счет 2ой молек. АТФ. В 4ой р-ции альдолаза расщеп. фруктозо-1,6-бисфосфат на диоксиацетонфосфат и глицеральдегид-3 фосфат, далее происходит р-ция изомерации под дейст. триозофосфатизомеразы. Обр-м глицеральдегид-3-фосфата завершается 1ая стадия гл-за. 2ая – вкл. ок.-восст. р-цию (реакция гликолитической оксидоредукции), сопряж. с субстр. фосф-м, в пр-се к-го обр-ся АТФ. В 6ой р-ции в присут. глицеральдегидфосфатд/г, кофермента НАД и неорг. фосфата глицеральдегид-3-фосфат подвергается окислению с образованием 1,3-бисфосфоглицерата и НАДН. 7ая р-ция катализ. фосфоглицераткиназой, происходит передача фосфатной группы в положении 1 на АДФ с образованием АТФ и 3-фосфоглицерата. В 8ой р-ции 3-фосфоглицерат превращ. в 2-фосфоглицерат.9ая катализ. енолазой, при этом 2-фосфоглицерат в результате отщепления молекулы воды переходит в фосфоенолпируват, а фосфатная связь в положении 2 становится высокоэргической. 10ая разрыв высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ - субстратное фосфорилирование. Катализируется пируваткиназой. В 11ой р-ции восст. ПВК и образуется лактат при участии ЛДГ и НАДН, образовавшегося в 6 р-ции.
№95 Метаболические превращения ПВК. ПВК под действием фермента ЛДГ в последней стадии анаэробного гликолиза превращается в лактат. При спиртовом брожении. которое набл. у плесневых грибков, дрожжеподобных организмов ПВК подвергается декарбоксилированию под действием пируватдекарбоксилазы. образуется ацетальдегид и выд. СО2. Ацетальдегид присоед. к себе водород.. отщепляемый от НАДН, восстанавливаясь при этом в этанол. Р-ция катализируется алкогольдегидрогеназой.
Из ПВК может синтезироваться глюкоза в процессе глюконеогенеза. При аэробном распаде глюкозы ПВК не восст. до лактата. а подвергается окислительному декарбоксилированию с обр-м ацетил-КоА. Аспарагиновая к-та и аланин путем переаминирования превращаются в пвк и оксалоацетат. серин под дейст. серинангидразы превращ. в ПВК. Цистеин окисл. с обр. цистеинсульфиновой к-ты. происх трансаминирование с а-кетоглуторатом, обр ПВК и сульфит. Осн. путь превращ. углеводов в жиры явл. путь обр. жир. к-т из ацетил-КоА. обр-ся при окислит декарбоксилировании ПВК.
№96 Окислительное декарбоксилирование ПВК. протекает под влиянием пируватдегидрогеназного комплекса. в который входит 3 ферментативнойЕ1 - тиаминдифосфатпируватдегидрогеназа, кофермент ТДФ,Е2 - дигидролипоилацетилтрансфераза (коферменты - липолиевая кислота. HS-КоА)Е3 - дигидролипоилдегидрогеназа (коферменты - НАД и ФАД) Нв 1ой стадии ПВК декарбоксилируется под действием Е1-ТПФ. На 2ой стадии оксиэтильная гр. комплекса Е1-ТПФ -СНОН-СН3 окисляется с образованием ацетильной гр., которая переносится на липолиевую к-ту (на ее амид), связ. с Е2. Затем. на 3ей стадии ацетильная группа переносится на коэнзимКоА с образованием конечного продукта - ацетилКоА. уч. в ЦТК. На 4ой стадии регенерируется полная форма липоамида из восст. комплекса Е2. При участии Е3 переносятся атомы водорода от восст. сульфгидридных гр. дигидролипоамида на ФАД. На 5ой стадии ФАДН2 передает водород на НАД с обр-м НАДН(Н).
№97 Глюконеогенез. Цикл Кори. Некот. ткани, напр. мозг, нуждаются в постоянном поступлении глюкозы. Когда поступ. углеводов в составе пищи недост., сод-е глюкозы в крови некоторое время поддерж. в пределах нормы за счёт расщепления гликогена в печени. Однако запасы гликогена в печени невелики. Они значительно уменьшаются к 6-10 ч голодания и практич. полностью исчерп. после суточ. голодания. В этом случае в печени начинается синтез глюкозы de novo - глюконеогенез - процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длит. голодания и интенс. физич. нагрузок. Протекает в основном в печени и менее интенс. в корковом в-ве почек, в слиз. об-ке кишеч.Первич. субстраты глюконеогенеза - лактат, ам-ты и глицерол. Лактат - продукт анаэр. гликолиза. Он обр-ся при любых состояниях организма в эритроцитах и работающих мышцах. Ииспользуется в глюконеогенезе постоянно. Глицерол высвоб. при гидролизе жиров в жир. тк. в период голодания или при длит. физич. нагрузке. Ами-ты обр-ся в рез-те распада мыш. белков и включ. в глюконеогенез при длит. голодании или продолжит. мыш. работе.Большинство р-ций глюконеогенеза протекает за счёт обратимых р-ций гликолиза и катализируется теми же ферментами. Однако 3 реакции необратимы. На этих стадиях р-ции глюконеогенеза протекают другими путями. Часть реакций глюконеогенеза происходит в митохондриях.ПВК --> оксалоацетат(пируваткарбоксилаза) Оксалоацетат --> фосфоенолпируват (фосфоенолпируваткарбоксикиназа — ГТФ-зависимый фермент). Далее все р-ции до фруктозо-1,6-фосфата проходят под дейст. Гликолитич. Ферм. Фруктозо-1,6-бисфосфатаза и глюкозо-6-фосфатаза катал. отщепление фосфатной гр. от фруктозо-1,6-бисфосфата и глюкозо-6-фосфата. После чего свободная глюкоза выходит из клетки в кровь.Лактат, обр-ся в интенс. раб. м-цах или в кл. с преобл. анаэр. спос. катаб. глюкозы, поступает в кровь, а затем в печень. В печени отношение NADH/NAD+ ниже, чем в сокращ. м-це, поэтому ЛДГ р-ция протекает в обратном направлении, т.е. в сторону образования ПВК из лактата. ПВК включ. в глюконеогенез, а образ-я глюкоза поступает в кровь и поглощ. скелет. м-цами - "глюкозо-лактатным циклом", или "циклом Кори", обесп. утилизацию лактата; предотвращает его накопление опасное снижение рН (лактоацидоз). Часть ПВК, обр. из лактата, ок. печенью. Энергия ок. может исп. для синтеза АТФ, необхо.о для р-ций глюконеогенеза. Из всех аминокислот, поступающих в печень, примерно 30% приходится на долю аланина. Аланин из мышц переносится кровью в печень, где преобразуется в ПВК, который частич. окисляется и частично включ. в глюкозонеогенез. Следовательно, сущ. следующая последовательность событий (глюкозо-аланиновый цикл): глюкоза в мышцах → пируват в мышцах → аланин в мышцах → аланин в печени → глюкоза в печени → глюкоза в мышцах. Весь цикл не приводит к увеличению количества глюкозы в мышцах, но он решает проблемы транспорта аминного азота из мышц в печень и предотвращает лактоацидоз. Аллостерическая регуляция скорости гликолиза, зависимая от изменения соотношения АТФ/АДФ, направлена на изменение скорости исп. глюкозы непосредственно кл. печени. Глюкоза в кл. печени исп. не только для синтеза гликогена и жиров, но также и как источник энергии для синтеза АТФ. Осн. потребителями АТФ в гепатоцитах явл. пр-сы трансмембранного переноса в-в, синтез белков, гликогена, жиров, глюконеогенез. От скорости утилизации АТФ в этих пр-сах зав. скорость его синтеза. АТФ, АДФ и АМФ, а также НАД и НАДН служат аллостерическими эффекторами некот. гликолитических ферментов и ферментов глюконеогенеза. В частности, АМФ активирует фосфофруктокиназу и ингибирует фруктозо-1,6-бисфосфатазу. АТФ и НАДН ингиб. пируваткиназу, а АДФ активирует пируваткарбоксилазу. Следовательно, при усил. расход. АТФ и снижении его конц-ции с одновременным увелич. конц-ции АМФ, активируется гликолиз и обр-е АТФ, а глюконеогенез при этом замедляется. Глюкокортикостероиды обесп. пр-сс глюконеогенеза субстратами
№100 Аэробное окисление глюкозы. Аэробный гликолиз включает - процесс окисления глюкозы с образованием 2 молекул ПВК, общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитратом цикле; цепь переноса электронов на О2, сопряжённая с р-циями дегидрирования происх. в пр-се распада глюкозы. В результате гликолиза образуется ПВК, который далее окисляется до СО2 и Н2О в ЦТК. Выход АТФ при окислении 1 моль глюкозы до СО2 и Н2О составляет 38 моль АТФ.В процессе аэробного распада глюкозы происходят 6 реакций дегидрирования. Субстраты для специфических НАД-зависимых дегидрогеназ: глицеральдегид-3-фосфат, ПВК, изоцитрат, α-кетоглутарат, малат. Одна реакция дегидрирования в цитратном цикле под действием сукцинатдегидрогеназы происходит с участием ФАД. Общее количество АТФ, синтезированное путём окислит. фофорилирования, составляет 17 АТФ на 1 моль глицеральдегидфосфата. К этому необходимо прибавить 3 АТФ, синтезированных путём субстр. фосфорилирования (две реакции в гликолизе и одна в цитратном цикле). Учитывая, что глюкоза распадается на 2 фосфотриозы и что стехиометрический коэффициент дальнейших превращений равен 2, полученную величину надо умножить на 2, а из результата вычесть 2 АТФ, использованные на первом этапе гликолиза.
№104 Челночные механизмы транспорта. НАДН обр-ся при ок. глицеральдегид-3-фосфата в аэр. гликолизе, подвергается окислению путём переноса атомов водорода в митохондриальную дыхательную цепь. Однако цитозольный НАДН не способен передавать водород на дыхат. цепь, т.к. митоховдриальная мембрана для него непроницаема. молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма. Цитоплазматический НАДН сначала реагирует с цитоплазматическим ди-гидроксиацетонфосфатом, образуя глицерол-3-фосфат под дейст. НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидроге-назы. Глицерол-3-фосфат легко проникает через митох. мембр. Внутри митох. митохондриальная глицерол-3-фосфат-дегидрогеназа (флавиновый фермент) ок.т глицерол-3-фосфат до диоксиацетонфосфата. Восст-ый флавопротеин (ФАДН2) вводит на уровне KoQ приобретенные им эл. в цепь биол. окисления и сопряженного с ним окислительного фосфорилирования, а диоксиаце-тонфосфат выходит из митохондрий в цитоплазму и вновь взаимод. с цитоплазматическим НАДН2. Т.о., пара электронов , вводимая в дыхательную цепь с помощью глицеролфосфатного челночного механизма, дает не 3, а 2 АТФ.В кл. печени, почек и с-ца дейст. малат-аспартатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и ас-партатаминотрансферазы как в цитозоле, так и в митохондриях. От цитозольного НАДН + Н+ восстановленные эквиваленты сначала при участии фермента малатдегидрогеназы переносятся на цитозольный оксалоацетат. В рез-те обр-ся малат, который с пом. системы, транспортирующей дикарбоновые к-ты, проходит через внутр. мембр. митох. в матрикс. Здесь малат окисляется в оксалоацетат, а матриксный НАД+ восст. в НАДН2, к-ый может теперь передавать свои электроны в цепь дыхательных ферментов, локализованную на внутренней мембране митох. Оксалоацетат в присут. глутамата и фермента АсАТ вступает в р-цию трансаминирования. Образующиеся аспарат и α-кетоглутарат с помощью специальных транспортных систем спос. проходить через мембрану митох.Если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 АТФ.
№105 (см. стр 592 в учебнике !!!!!!!)При голодании в течение первых суток исчерпываются запасы гликогена в организме, и в дальнейшем источником глюкозы служит глюконеогенез, к-й при этом ускоряется, а гликолиз замедляется вследствие низкой концентрации инсулина и высокой концентрации глюкагона.Через 1-2 сут снижается количество гликолитич. ферментов и повышается количество ферментов глюконеогенеза. Изменение синтеза ферментов также связано с влиянием инсулина и глюкагона.Со 2го дня голодания достигается максимальная скорость глюконеогенеза из аминок-т и глицерина. При голодании глюкоза не используется мыш. и жир. кл., поскольку в отсут. инсулина не проникает в них и таким образом сберегается для снабжения мозга и других глюкозозависимых клеток. При достаточно продолжительном голодании (несколько дней и больше) мозг начинает использовать и другие источники энергии. При голодании глюкагон усиливает концентрацию жирных к-т вкрови благодаря мобилизации жиров. Активир. глюконеогенез. А также кетогенез, мобилизацию гликогена. Сахарный диабет. Повышение конц-ции глюкозы в плазме крови обусл. сниж. скорости исп. глюкозы тк. из-за недост. инсулина или снижения биологического действия инсулина в тканях-мишенях. При дефиците инсулина уменьш. кол-во белков-переносчиков глюкозы на мембранах инсулинзависимых клеток (жировой ткани и мышц). В м-цах и печени глюкоза не депонир. в виде гликогена, в жир. ткани уменьшается ск-ть синтеза и депонир. жиров. Кроме того, при снижении инсулинглюкагонового индекса актив. глюконеогенез из аминок-т, глицерола и лактата. Повышение конц-ции глюкозы в крови при сах. диабете превышает концентрационный почечный порог, что становится причиной выделения глюкозы с мочой (глюкозурия). При низком соотношении инсулин/глюкагон жиры не депонир., ускор. их катаболизм, так как гормончувствительная липаза в жировой ткани находится в фосфорилированной активной форме. Печень захватывает жирные к-ты, ок. их до ацетил-КоА, который, превращ. β-гидроксибутират и ацетоацетат. В тк. ацетоацетат частич. декарбоксилируется до ацетона. Увеличение концентрации кетоновых тел в крови (выше 20 мг/дл, иногда до 100 мг/дл) приводит к кетонурии. Накопление кетоновых тел снижает буферную ёмкость крови и вызывает ацидоз.Повыш. ур. в крови липопротеинов (в основном, ЛПОНП). Пищевые жиры не депонируются в жир. тк. вследствие ослабления пр-сов запасания, а поступ. в печень, где частич. превращ. в триацилглицеролы, к-е транспортир. из печени в составе ЛПОНП.Сниж. скорость синтеза белков и усил. распад белков. Это выз. повыш. конц-ции аминок-т в крови. Ам-ты поступают в печень и дезаминируются. Безазотистые остатки гликогенных аминокислот включаются в глюконеогенез, что ещё более усиливает гипергликемию. Аммиак вступает в орнитиновый цикл, что приводит к увеличению концентрации мочевины в крови, в моче - азотемия и азотурия. Высокие конц-ции глюкозы, кетоновых тел, мочевины требуют усил. экскреции. Концентрационная спос-ть почек ограничена, резко увеличивается выделение большого количества воды, в результате чего может наступить обезвоживание организма. Выделение мочи у больных возрастает в несколько раз и в некоторых случаях достигает 8-9 л в сутки, но чаще не превышает 3-4 л - полиурия. Потеря воды вызывает постоянную жажду - полидипсия.
№107 Пентозофосфатный путь превращения глюкозы.служит альтернативным путём окисления глюкозо-6-фосфата. Ссостоит из окислительной и неокислительной частей. В окислит. фазе глюкозо-6-фосфат необратимо ок. в пентозу - рибулозо-5-фосфат, и образуется восстановленный НАДФН. В неокислит. фазе рибулозо-5-фосфат обратимо превращ. в рибозо-5-фосфат и метаболиты гликолиза. Пентозофосфатный путь обеспечивает кл. рибозой для синт. пуриновых и пиримидиновых нуклеотидов и гидрированным коферментом NADPH, который используется в восст. процессах.Суммарное уравнение пентозофосфатного пути выражается :3 Глюкозо-6-фосфат + 6 NADP+ → 3 СО2 + 6 (NADPH + Н+) + 2 Фруктозо-6-фосфат + Глицеральдегид- 3 -фосфат.Ферменты пентозофосфатного пути локализованы в цитозоле.Наиболее активно протекает в жировой ткани, печени, коре надпочечников, эритроцитах, молочной железе в период лактации, семенниках. Превращение глюкозо-6-фосфата в глюконолактон-6-фосфат - катал. НАДФ-зав. глюкозо-6-фосфатдегидрогеназой и сопров. окисл. альдегидной гр. у первого атома углерода и образованием одной молекулы НАДФН.Глюконолактон-6-фосфат превращается в 6-фосфоглюконат при уч. глюконолактонгидратазы.6-фосфоглюконатдегидрогеназа катал. реакцию в ходе которой происх дегидрир и декарбокс. и обр-ся рибулозо-5-фосфат и молекула НАДФН .НАДФН как донор водорода участвует в анаб. пр-сах, например в синт. холестерина. Это источник восстановит. эквивалентов для цитохрома Р450, катализирующего обр. гидроксильных групп при синтезе стероидных гормонов, жёлчных к-т.Неокислит. этап пентозофосфатного пути включает серию обратимых р-ций, в рез-те к-х рибулозо-5-фосфат превращ. в рибозо-5-фосфат и ксилулозо-5-фосфат, и далее за счёт переноса углеродных фрагментов в метаболиты гликолиза - фруктозо-6-фосфат и глицеральдегид-3-фосфат. В этих превращ. принимают участие: эпимераза, изомераза, транскетолаза и трансальдолаза. Транскетолаза в качестве кофермента использует тиаминдифосфат. Для эритроцитов единственным источником получения НАДН служит пентозофосфатный путь. необх. для защиты от токсич. действия кислорода. В эритроцитах многие ферменты имеют в актив. центрах SH-группы, к-е могут окисляться под дейст. кислорода. НАДФН регенер. эти гр.
№112, 113Классификация липидов. Роль в жизнедеят-ти клетки. Метабиолизм липопротеинов, транспорт липидов между органами и тканями. Нарушение обмена липидов при сердечно-сосудистых заболеваниях. Липиды - в-ва, обл. общ. физич. св-вом - гидрофоб.Осн. массу составляют жиры - триацилглицеролы, служ. ф. депонир. энергии. Жиры расп. преимущ. в п/кожной жир. тк. и вып. также ф-ции теплоизоляционной и мех. защ. Фосфолипиды - кл. липидов, псод. ост. фосф. к-ты, прид. им св-ва амфифильности. Фосфолипиды форм. бислойную струк. мембран, в к-ую погружены белки. Кл. окружённые мембранами, отл. по сост. и набору молекул от окр. среды, поэтому хим. пр-сы в кл. разд. и ориентированы в пр-ве, что необх. для рег. метаб. Тромбоцитактивирующий фактор - фосфолипид - оказ. сильное влияние на агрег. тромбоцитов. Стероиды, (холестерол и его произв.), вып. разнообр. ф-ции. Холестерол - важный комп. мембран и регулятор св-в гидрофобного слоя. Жёлч. к-ты необх. для перевар. жиров. Стер. горм. уч. в регул. энергетич., водно-солевого обм., пол. ф-ций. В соответствии с хим. стр. различают 3 осн. гр.: 1) жирные к-ты и продукты их ферментативного ок., простагландины и др. гидроксикислоты,2) глицеролипиды (содержат в молекуле остаток глицерина), моно-, ди- и триглицериды и плазмалогены, гликозилдиглицериды и больш-во фосфолипидов 3) липиды, не сод. в молекуле остаток глицерина (за исключением соед., входящих в первую группу). сфинголипиды, стерины и воски. В клетках эпителия тонкой кишки из жиров, обр. в рез-те ресинтеза, а также из эфиров холестерола, жирораств. вит., поступ. с пищей, формир. липопротеиновые комплексы - хиломикроны (ХМ). ХМ далее доставляют жиры в периф. тк.Липопротеины имеют сход. стр. - гидрофоб.ядро и гидрофил. слой на пов-ти. Гидрофил. слой обр-н белками - апопротеинами, и амфифильными молек. липидов, фосфолипидами и холестеролом. В организме синт-ся липопрот: хиломикроны (ХМ), ЛПОНП, ЛППП, ЛПНП и ЛПВП. ХМ транспорт. экзогенные (пищевые жиры) из киш. в тк., ТАГ сост. до 85% массы. ХМ могут проник. через стенки кап., из кл. кишеч. они попадают в лимфат. сист. и потом через главный груд. проток вливаются в кровь вместе с лимфой. В результате действия ЛП-липазы на жиры ХМ образуются жирные кислоты и глицерол. ЛПОНП сод 55% триацилгиц. 18% фосфолип., 10% холест. Трансп. нейтр. жиры из печени в жир. тк.ЛПНП сод 45% холест.. 22%фосфолип., 7%ТАГ, возн. в плазме из осколков ХМ, дост. холест. в тк. ЛПВП сод. ТАГ 3%, фосфолип. 27%, холест. 20%. трансп. изб. холест. в печень. Апопротеины формир. струк. ЛП; взаимод. с рецеп. на пов-ти кл. и опр., какими тк. будет захватываться данный тип липопротеинов; служат ферментами или активаторами ферментов, действующих на ЛП.Генет. дефекты белков, уч-х в метаболизме ХМ, приводят к разв. семейной гиперхиломикронемии - гиперлипопротеинемии типа I. У таких б-х в постабсорбтивном периоде конц-ция ТАГ повышена (более 200 мг/дл). В тяж. случ. происходит отложение ТАГ в коже и сухож. в виде ксантом, рано наруш. память, появляются боли в животе из-за сужения просвета сосудов и уменьш. кровотока, наруш. ф-ция подж. ж-зы, что часто бывает причиной смерти больных. Гиперхолестеринемия создает повышенную опасность заболевания атеросклерозом. Вероятность заболевания тем выше, чем больше отношение концентрации ЛНП к концентрации ЛВП в крови; их называют соответственно атерогенными и антиатерогенными липопротеинами. Гл. бх прояв. атероскл. — отложения холест. в стенках артерий. В артериях обр-ся бляшки, наруш. кровоток или полностью закрывающие сосуд. Бляшки сод. гладкомыш. кл, соед. тк., липиды (в основном эфиры холестерина), остатки разрушенных клеток. Существ. знач. имеют также первич. повреждения кл. сосудов. Поврежд. эндотелия могут возн. вследствие действия модифицир. ЛП, при гипертонии, восп. пр-сах, наруш. сверт. крови, действии токс. в-в.На поврежденной пов-ти происх. агрегация тромбоцитов, к-ые нач. выделять цитокины, стимулир. пролиф. гладкомыш. кл. и их миграцию из средней об-ки артерии во внут. об-ку. Такие цитокины секретируются и макрофагами.Кл. в обл. повреждения секретируют коллаген, эластин, гликозамингликаны, образуя фиброзную капсулу — атеросклерот. бляшку, сод. эфиры холестерина. Клетки, оказавшиеся внутри бляшки, погибают. Разрыв капсулы и кровотечение из бляшки приводят к быстрому образованию тромба, закрывающего сосуд.
№113 Cфинголипиды. Строение. Роль. Сфинголипидозы. Аминоспирт сфингозин, сост. из 18 атомов углерода, сод. гидроксильные гр. и аминогруппу. Сфингозин обр. большую группу липидов, в к-х жир. к-та связана с ним через аминогруппу. Продукт взаимод. сфингозина и жир.й к-ы называют "церамид". В церамидах жир. к-ты связаны необычной (амидной) связью, а гидроксильные гр. способны взаимодействовать с другими радикалами. Наиболле распр. сф-ды - сфингомиелины. при гидролизе обр. 1 молек. жир. к-ты. 1 молек. сифнгозина. 1 молек. азот. ос. (чаще всего холин), и 1 молек. фосф. к-ты. Сфингомиелины - основные компоненты миелина и мембран клеток мозга и нервной ткани.Гликофсинголипиды (гликолипиды) сод. церамид и один или неск. ост. сахаров. Галактозилцерамиды - глав. сфинголипиды мозга и др. нерв. тк. Жир. к-ты им. 24 углатома. Глюкозилцерамиды - предст. в тк., сод. ост. глюкозы. Гликолипиды нах. в основном в мембранах клеток нерв. ткани. Глобозиды отлич. от цереброзидов тем, что имеют в своём составе несколько углев. остатков, связанных с церамидом. Цереброзиды и глобозиды относят к нейтр. сфинголипидам, т. к. они не сод. заряженных гр. Сульфатиды - гидроксил у 3го углеродного атома моносах., входящего в состав цереброзида, может связывать остаток серной кислоты. В этом случае образуются сульфатиды, обладающие св-вами к-т и поэтому называемые кислыми сфинголипидами. При физиологических значениях рН сульфатированный углеводный остаток имеет отрицательный заряд. Около 25% цереброзидов мозга представляют собой сульфатированные производные. Сульфатиды в значительных количествах находят в белом веществе мозга. Ганглиозиды - наиболее сложные по составу липиды. Они содержат неск. углеводных остатков, среди к-х присут. N-ацетилнейраминовая к-та. Нейраминовая к-та представляет собой углевод, состоящий из 9 атомов углерода и входящий в группу сиаловых к-т. Сфинголипидозы — наслед. болезни обм. в-в, хар-ся пат. накопл. опр. класса мембранных липидов, в сост. к-х входит сфингозин. Б-нь Ниманна-Пика, дети с таким дефектом погибают в раннем возрасте. набл. гепатоспленомегалия, в лизосомах к-х накапл. сфингомиелин; умст. отсталость. Генет. дефект церамидазы приводит к развитию б-ни Фарбера, набл. гепато- и спленомегалия, а также пораж. суст. Б-нь Гоше - деф. β-глюкрзидазы, б-нь Тея-Сакса Сфинголипидозы обычно приводят к смерти в раннем возрасте, т. к. происх. пораж. кл. нерв. тк., где сконцентрированы гликосфинголипиды.
№114 Пищевые жиры, их переваривание. Всасывание. Нарушения переваривания и всас. Биосинтез триглицеридов. Переваривание экзо. жира обязательно требует предварительного эмульгирования. Некоторые пищевые жиры поступают в организм уже в эмульгированной форме, например молочный жир. Эмульгаторы – вещества амфифильной природы, сниж. поверхн. натяж. и стабилиз. эмульсию. Создается большая площадь контакта жира с водной фазой, в которой находится фермент. В орг. человека эмульгаторами являются желч. к-ты. В составе желчи желчные кислоты поступают в 12-перстную кишку и аллостерически активируют панкреатическую липазу. Собственно переваривание жиров – это гидролиз сложноэфирных связей. Существует три фермента:Язычная липаза, выраб. кл. слиз. об-ки задней части языка. Действие этого фермента проявляется только в желудке, может переваривать уже эмульгированный жир. В желудке взр. чел. язычная липаза неакт. У взр. перевар. жира идет только в кишеч. Панкреатическая липаза акт-ся колипазой. Обр-ся жир. к-ты и моноацилглицерины могут всасываться в кишечную стенку. Под действием эстеразы липидов часть моноацилглицеринов может подвергаться гидролизу с образованием глицерина и жирных кислот. Т. о., продуктами перевар. жира являются глицерин, жир. к-ты и моноацилглицерины. Всас. продукты перева. путем предварит. обр. смешанных мицелл с желч. к-тами. Биосинтез триглицеридов.Ресинтез триглицеридов происх. в энероцитах сл. об-ки ворсинок тонк. киш. в гладкой ЭПС активир. жир. к-ты, происходит ацилирование моноглицеридов с обр-м сначала диглицеридов. а затем триглицеридов. Катализ триглицеридсинтазой. В шероховатом ЭПС обр-ся актив. ф. жир. к-ты, обр. а-глицеролфосфата. превращ его в фосфатидат. Превращ. фосфатидата в диглицерид, а затем в триглицерид. Ресинтезированные в клетках кишечной стенки триглицериды соед. внутри цистерн гладкого эндоплазматического ретикулума с небольшим количеством белка и образуют хиломикроны.Нарушения перевар. и всас. жиров. Связ. с недост. поступ. панкреат. липазы в киш., или наруш. поступ. в кишеч. желчи. Наруш. м. б. связ. с заб. пищ. тракта (при энтеритах, гиповитаминозах и др забол.). Обр-ся в полости киш. моноглицериды и жир. к-ты не могут нормально всас. вследствие повр. эпит. покрова киш. Кал сод. много нерасщеп. жира или невсосавшихся высших жир. к-т и имеет серовато-белый цвет.
№115, 116Ненасыщенные жир. к-ты. Физ-хим св-ва. Биологическая роль. Примерно 3/4 всех жирных кислот являются непредельными (ненасыщенными), т.е. сод. двойные связи. Ненасыщ. жир. к-ты человека и животных, участвующие в построении липидов, обычно содержат двойную связь между (9-м и 10-м атомами углеводородов); дополнительные двойные связи чаще бывают на участке между 11-м атомом углерода и метильным концом цепи. Своеобразие двойных связей природных ненасыщенных жирных кислот заключается в том, что они всегда отделены двумя простыми связями, т.е. между ними всегда имеется хотя бы одна метиленовая группа (—СН=СН—СН2—СН=СН—). при наличии двойной связи в жирнокислотной цепи вращение углеродных атомов относительно друг друга ограничено. Это обеспечивает существование ненасыщенных жирных кислот в виде геометрических изомеров причем природные ненасыщ. жир. к-ты имеют цис-конфигурацию. Цис-конфиг. делает ненасыщенную кислоту менее стабильной и более подверженной катаболизму. Ненасыщ. жир. к-ты: пальмитолеиновая (C15H29COOH, 1 двойная связь), олеиновая (C17H33COOH, 1 двойная связь)Полиненасыщ. жир. к-ты: линолевая (C17H31COOH, 2 двойные связи), линоленовая (C17H29COOH, 3 двойные связи), арахидоновая (C19H31COOH, 4 двойные связи).Ткани жив. обладают весьма огранич. спос-тью превращать насыщенные жирные кислоты в ненасыщенные. Поэтому в пище животных должны обязательно присутствовать некоторые поли ненасыщенные жирные кислоты , содержащиеся в продуктах растительного происхождения. Это незам. жир. к-ты. Точка плавления и текучесть жиров зав. от сод-я в них ненасыщенных жир. к-т . Фосфолипиды клет. мембр. содержат ненасыщ. к-ты, которые играют важную роль в обеспечении текучести мембран . Достаточно высокая величина отношения полиненасыщ. и насыщ. жир. к-т в пищ. рационе является основным фактором, обесп. сниж. холестерола в плазме крови, и спос. предотвращению разв. ИБС. Простагландины и тромбоксаны являются гормонами местного действия; при необх. они быстро синт. и действуют в непосредственной близости от места их синтеза. Основная физиол. ф-ция простагландинов состоит в модулировании акт-ти аденилатциклазы и выраж., например, в регуляции агрегации тромбоцитов или ингибировании действия АДГ в почках. Лейкотриены обладают свойством вызывать мышечное сокращение и хемотаксис , это позволяет предполагать, что они играют существенную роль в аллергических реакциях и при воспалении.
№117 Липидный состав мембран. В мембранах имеются фосфолипиды 2 типов — глицерофосфолипиды и сфингофосфолипиды.Глицерофосфолипиды явл. производными фосфатидной к-ты (диацилглицеринфосфата).Сфингофосфолипиды (сфингомиелины) сод. аминоспирт сфингозин. Сфингофосфолипиды явл. производными церамидов (N-ацилсфингозинов).Гликолипиды - углеводсодержащие соединения, в которых углеводная часть ковалентно связана с липидной.В мембранах содержатся главным образом углеводные производные церамида (N-ацилсфингозина). Общее название таких гликолипидов — гликозилцерамиды, глико-сфинголипиды (их называют также цереброзидами).Холестерин — это предста-витель группы липидов, называемых стероидами.Вследствие амфифильности липиды в водной среде образуют многомолекулярные структуры с упорядоченным расположением молек: гидрофоб. ч. вытесняются из водной среды и взаимодействуют друг с другом (как бы растворяются друг в друге), а гидрофильные части контактируют с водой и гидратируются (как бы растворяются в воде). Именно эта особенность строения и физ-хим. св-в опр. роль фосфолипидов и гликолипидов в построении биологич. мембран: основу мембран составляет бимолекулярный липидный слой.Двойной липид. слой имеет жидкокристаллическую струк: положение молекул липидов упорядочено, однако они сохраняют способность к диффузии в пределах слоя параллельно поверхности мембраны (латеральная диффузия).Фосфолипазы (фосфатидазы) - ферменты класса гидролаз, катал. гидролиз фосфоглицеридов. В зав-ти от положения гидролизуемой связи в фосфолипиде различают 4 осн. класса : A, B, C и D.Фосфолипиды в кишеч. подвергаются дейст. фосфолипазыА2, катализир. гидролиз. сложноэфирной связи в -положении. Глицрофосфолипиды расщеп. с обр-м лизофосфолипида и жир. к-ты. Лизофосфолипид подв. дейст. лизофосфолипазы панкр. сока, обр-ся глицерофосфохолин. который всас. в кровь. Ф-за А1 атакует эфир. св. фосфолипидов в положении 1. ф-за С разруш. эфир. св. в положении 3, обр-ся 1,2 диглицерид и фосфорильное основание.
№118Распад и синтез триацилглицеринов. Жиры - наиболее выгодная и основная форма депонирования энергии. Депонированный жир может обеспечивать организм энергией при голодании в течение длительного времени (до 7-8 нед). Синтез жиров активируется в абсорбтивный период и происходит в основном в жировой ткани и печени. В жир. ткани для синт. жиров исп. в основном жир. к-ты, освободившиеся при гидролизе жиров ХМ и ЛПОНП. Жир. к-ты поступ. в адипоциты, превращ. в производные КоА и взаимод.т с глицерол-3-фосфатом, образуя сначала лизофосфатидат, а затем фосфатидат. Фосфатидат после дефосфорилир. превращ. в диацилглицерол, который ацилируется с образованием триацилглицерола.Кроме жир. к-т, поступ. в адипоциты из крови, в этих кл. идёт и синтез жир. к-т из прод. распада глюкозы. В адипоцитах для обесп. р-ций синтеза жира распад глюкозы идёт по двум путям: гликолиз, обеспечивающий образование глицерол-3-фосфата и ацетил-КоА, и пентозофосфатный путь, окислит. р-ции к-го обесп. образование НАДФН, служащего донором Н в р-циях синтеза жир. к-т. В гладком ЭР гепатоцитов жир. к-ты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жир. тк., синтез жиров идёт через образование фосфатидата. Синтезированные в печени жиры упаковываются в ЛПОНП и секретируются в кровь.Гидролиз внутриклет. жира осущ. под действием фермента гормончувствительной липазы - ТАГ-липазы. Отщепляет одну жир. к-ту у первого углеродного атома глицерола с обр-м диацилглицерола, а затем др. липазы гидролизуют его до глицерола и жир. к-т, которые поступают в кровь. Глицерол как водорастворимое в-во транспортируется кровью в своб. виде, а жир. к-ты (гидрофобные молекулы) в комплексе с белком плазмы - альбумином. Регуляция .В абсорбтивном состоянии под действием инсулина происходит липогенез, в постабсорбтивном состояни-липолиз, активируемый глюкагоном. Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз.
№119 Биосинтез и катаболизм фосфолипидов и гликолипидов. Ф-ции фосфолипидов и гликолипидов. Фосфолипиды играют важную роль в струк. и ф-ции клеточ. мембр.. актив. мембр. и лизосомальных ферм., проведении нерв. имп., сверт. крови, иммунологич. р-циях, процессах кл. пролиферации и регенерации тк., переносе эл. в цепи дыхат. ферм. формир. липопрот. комплексы. Биосинт. происх. в печени, стенки кишеч., семенниках, яичниах, мол. ж-зе. В ЭПС. Центр. роль в биосинтезе играют 1,2-диглицериды, фосфатидат и сфингозин. ЦТФ. Фосфатидилэтаноламин синт. из этаноламина. и явл. предш. фосфатидилхолина. Сфингомиелин синт-ся в рез-те р-ции церамида с ЦДФ-холином. Различные типы фосфолипаз, лок. в кл. мембранах или в лизосомах, катализируют гидролиз глицерофосфолипидов. Гидролиз некоторых глицерофосфолипидов под действием фосфолипаз имеет значение как путь обр. вторич. посредников или предш. в синтезе эйкозаноидов. Кроме того, фосфолипазы А1 и А2 участвуют в изменении состава жир. к-т в глицерофосфолипидах, напр. при синт. в эмбр. периоде лецитина - компонента сурфактанта. Гликосфинголипиды - гликолипиды, в состав к-х входят церамид и один или несколько остатков углеводов, и сиаловая (N-ацетилнейраминовая) к-та. Локализованы в плазматич.х мембр. кл. т. о., что углеводная часть молек. расп. на пов-ти кл. и часто обладает АГ св-вами.Синтез нач. с обр. церамида. Серин конденсируется с пальмитоил-КоА. Продукт их взаимодействия сначала восст.НАДФН, затем к аминогруппе дигидросфингозина амидной связью присоед. жир. к-та. После окисления ФАД-зависимой дегидрогеназой обр. церамид, к-й служит предш. в синтезе гликосфинголипидов. Послед. р-ции синтеза катализ. специф. трансферазами. Соед. фосфорилхолина с церамидом сфингомиелинсинтазой приводит к образованию сфингомиелина. Присоединение углеводных компонентов катализируется специф. гликозилтрансферазами. Донорами углеводных компонентов служат активированные сахара: УДФ-галактоза и УДФ-глюкоза. Галактоцереброзид - главный липид миелиновых об-к; глюкоцереброзид входит в состав мембран многих клеток и служит предш. в синтезе более сложных гликолипидов.
Катаб. сф-нов и гликолипидов происх. в лизосомах. В распаде сфингомиелинов уч. сфингомиелиназа, отщепляющая фосфорилхолин, и церамидаза, продуктами действия которой являются сфингозин и жир. к-та. В рез-те послед. р-ций гидролиза α- и β-галактозидазой, β-глюкозидазой, нейраминидазой и церамидазой, гликосфинголипиды расп. до моном.: гл-зы, галактозы, жир. к-ты, сфингозина и др. метаб.
№120 Обр-е желчных к-ты и их роль в переваривании жиров. Коньюгирование желч. к-т..
Жёлч. к-ты обл. пове-активными св-вами и уч. в перевар. жиров, эмульгируя их и делая доступными для действия панкреатической липазы.
Жёлч. к-ты - произв.е холестерола с пятиуглерод. боковой цепью в положении 17, к-ая заканч. карбоксильной гр. В организме человека синт. две жёлч. к-ты: холевая и хенодезокеихолевая. Так как карбоксильные группы этих жёлчных кислот имеют рК~6, они не полностью диссоциированы при физиологических значениях рН в кишечнике и не являются эффективными эмульгаторами. В печени эмульгирующие св-ва жёлч. к-т увелич. за счёт р-ции конъюг., в к-й к карбоксильной гр. жёлч. к-т присоед. таурин или глицин. Эти производные - конъюгированные жёлчные кислоты - нах. в ионизированной форме и поэтому называются солями жёлчных кислот. Именно они служат главными эмульгаторами жиров в киш.
Вторичные желчные кислоты , включая дезоксихолевую кислоту и литохолевую кислоту , образуются из первичных желчных кислот в толстой кишке под действием бактерий. Литохолевая кислота всасывается значительно хуже, чем дезоксихолевая . Другие вторичные желчные кислоты образуются в ничтожно малых количествах.