
- •1.Световая волна. Интерференция света. Когерентность световых волн. Расчет интерференционной картины от двух источников.
- •2.Методы наблюдения интерференции (опыт Юнга, интерференция в тонких пленках). Интерферометры.
- •3.Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция на круглом отверстии. Векторные диаграммы.
- •4.Дифракция от одной щели. Условия максимума и минимума.
- •5.Дифракционная решетка. Дифракция на пространственной решетке, формула Брэггов-Вульфа.
- •6.Поляризация света. Поперечность световых волн. Виды поляризации. Закон Малюса.
- •7.Поляризация света при отражении. Закон Брюстера. Двойное лучепреломление. Поляриметрия.
- •8.Дисперсия света. Теория дисперсии света Лоренца.
- •9.Поглощение света. Закон Бугера.
- •10.Тепловое излучение. Законы теплового излучения. Абсолютно черное тело. Квантовая гипотеза и формула Планка.
- •11. Внешний фотоэффект. Уравнение Эйнштейна. Фотоны, их энергия и импульс.
- •12. Давление света. Эффект Комптона.
- •13. Корпускулярно-волновой дуализм. Гипотеза де Бройля. Дифракция электронов. Соотношение неопределенностей.
- •14. Волновая функция, ее свойства и статистический смысл. Уравнение Шредингера (временное, стационарное).
- •15. Стационарное уравнение Шредингера, его применение. Частица в одномерной потенциальной яме.
- •16.Линейный гармонический осциллятор. Туннельный эффект.
- •17. Строение атома. Опыты Резерфорда по рассеянию α-частиц. Ядерная модель, ее трудности. Закономерности в атомных спектрах. Теория атома водорода по Бору. Спектр водорода.
- •18. Атом водорода в квантовой механике. Квантовые числа. Многоэлектронные атомы. Спектры атомов.
- •19.Спонтанное и вынужденное излучение. Лазеры.
- •20. Термодинамический и статистический методы. Молекулярно-кинетическая теория идеального газа. Тепловое движение. Уравнение состояния идеального газа.
- •22. Понятие о классической статистике. Математическая вероятность, законы сложения и умножения вероятностей. Функция распределения. Среднее значение.
- •23. Закон распределения по скоростям и по компонентам скоростей Максвелла. Скорости теплового движения (средняя арифметическая, средняя квадратичная, наиболее вероятная).
- •24. Газ в поле тяготения. Барометрическая формула. Распределение Больцмана.
- •25. Столкновения молекул. Средняя длина свободного пробега. Эффективный диаметр молекул.
- •26. Диффузия, внутреннее трение, теплопроводность. Коэффициенты диффузии, вязкости и теплопроводности.
- •27. Термодинамика. Первое начало термодинамики. Теплоемкости газа. Работа и теплоемкость при изопроцессах. Зависимость теплоемкости от температуры.
- •28. Адиабатический процесс. Работа при адиабатическом процессе. Уравнение Пуассона.
- •29. Круговой процесс (цикл). Кпд цикла. Обратимые и необратимые процессы. Второе начало термодинамики по Кельвину и Клаузиусу
- •30. Энтропия, ее свойства. Неравенство Клаузиуса.
- •31. Изменение энтропии в изопроцессах с идеальным газом. Т-s-диаграмма.
- •32. Цикл Карно, теорема Карно. Максимальный кпд тепловой машины.
- •33. Термодинамическая вероятность состояния системы. Статистический смысл второго начала термодинамики. Понятие о термодинамике открытых неравновесных систем. Третье начало термодинамики.
- •34. Реальный газ. Межмолекулярные взаимодействия. Уравнение Ван-дер-Ваальса. Критические параметры. Фазы и фазовые переходы.
- •35. Кристаллическое состояние, его характеристика. Типы кристаллических решеток. Механические свойства твердых тел. Закон Гука.
- •36. Тепловое расширение твёрдых тел. Теплоемкость твердых тел. Закон Дюлонга и Пти.
- •37. Квантовые статистики. Функция распределения Ферми-Дирака и Бозе-Эйнштейна. Вырожденный и невырожденный квантовый газ.
- •38. Фотонный и фононный газ. Теплоемкость кристаллической решетки.
- •39. Выводы квантовой теории электропроводимости металлов. Зависимость сопротивления проводников от температуры. Сверхпроводимость.
- •40. Элементы зонной теории твердого тела. Энергетические зоны в кристаллах. Заполнение зон. Металлы, диэлектрики и полупроводники с точки зрения зонной теории.
- •41. Собственные полупроводники. Зависимость сопротивления полупроводников от температуры.
- •42. Примесные полупроводники. P-n – переход.
- •43. Фотопроводимость. Транзистор.
- •44. Работа выхода электрона из металла. Термоэлектронная эмиссия, её применение. Контактная разность потенциалов (внешняя, внутренняя).
- •45. Термоэлектрический эффект. Эффект Пельтье.
- •46. Современная физическая картина мира.
26. Диффузия, внутреннее трение, теплопроводность. Коэффициенты диффузии, вязкости и теплопроводности.
Диффузия:
Внутреннее трение в твёрдых телах, свойство твёрдых тел необратимо превращать теплоту в механическую энергию, сообщенную телу в процессе его деформирования. В. т. связано с двумя различными группами явлений — неупругостью и пластической деформацией.
Вязкость:
Теплопроводность:
- коэффициент теплопроводности
- коэф. теплопроводности численно равен
кол-ву теплоты перенесенной за единицу
времени через единичную площадку при
единичном градиенте температур.
27. Термодинамика. Первое начало термодинамики. Теплоемкости газа. Работа и теплоемкость при изопроцессах. Зависимость теплоемкости от температуры.
Термодинамика- наука о наиболее общих св-вах макросистем о находящихся в состоянии термодинамического равновесия и о процессах перехода между этими состояниями.
Вн. энергия- суммарная энергия
Теплота, сообщенная системе идет на работу системы против внешних сил и на приращение внутренней энергии системы.
Изопроцессы:
1)изотерма (T=const)
2)изохора (
3)изобара (
Газовая постоянная численна равна
работе одного моля идеального газа, при
изобарном нагреве на 1К.
Определения:
1)Теплоемкость- кол-во теплоты, которое
нужно собщить всему телу на повышение
температуры на 1К.
2)Теплоемкость удельная- кол-во теплоты,
которое нужно сообщить единице массы
на повышение температуры на 1К.
3)Теплоемкость молярная- кол-во теплоты,
которое нужно сообщить 1 молю в-ва чтобы
нагреть его на 1 К.
1)
2)
3)
28. Адиабатический процесс. Работа при адиабатическом процессе. Уравнение Пуассона.
Адиабата- процесс без теплообмена с
окр. средой.
Показатель Пуассона
Уравнение Пуассона
29. Круговой процесс (цикл). Кпд цикла. Обратимые и необратимые процессы. Второе начало термодинамики по Кельвину и Клаузиусу
Цикл – это процесс, в котором система, пройдя ряд последовательных состояний возвращается в исходное.
Наг.
Обратимые и не обратимые процессы.
Процесс называется обратимым, если он может идти как в прямом, так и в обратном направлении, при этом, если система возвращается в исх. состоянии, то ни в самой системе, ни в окр.среде не происходит никаких изменений. Все равновесные процессы обратимы. Равновесный процесс – это процесс, любая точка которого это состояние равновесия. Только равновесные процессы изображают на графиках.
Все реальные процессы необратимы. Необратимые: теплопроводность, диффузия, вязкость, трение.
КПД выше если процесс наиболее близок к идеальному.
Второе начало термодинамики.
Карно доказал, что невозможно построить
вечный двигатель второго рода(
),
т.е. невозможен процесс единственным
результатом которого будет превращение
всей теплоты полученной от нагревателя
в эквивалентную ей работу.
По Клаузиусу: невозможно без совершения дополнительной работы передавать теплоту от холодного к горячему.
30. Энтропия, ее свойства. Неравенство Клаузиуса.
Энтропия –S –одна из ф-ций состояния системы, а изменение энтропии не зависит от пути перехода, а опр. только начальное и конечное состояние системы.
Энтропия – это термодинамическая ф-ция
дифференциал которой равен приведенной
теплоте отнесенной к температуре:
Св-ва энтропии:
1)Энтропия- это ф-ция состояния =>
2)Энтропия- агитивна, т.е. энтропия системы равна сумме энтропий всех ее частей.
3)Неравенство Клаузиуса (еще одна формулировка 2 начала термодинамики)
Энтропия замкнутой системы неубывает:
е,
если > необратимые
Обратимые
Необратимые
Неравенство Клаузиуса (1854): Количество теплоты, полученное системой при любом круговом процессе, делённое на абсолютную температуру, при которой оно было получено (приведённое количество теплоты), неположительно.