
- •1. Электропроводимость полупроводников
- •2. Примесные полупроводники
- •3 . Токи в полупроводнике. Дрейф и диффузия
- •4. Электрические переходы
- •(6)Р-n переход при внешнем напряжении, приложенном к нему
- •7. Физические процессы в р-п переходе и его свойства при внешнем электрическом напряжении
- •9.Пробой p-n перехода
- •10.Ёмкости p-n перехода
- •11.Полупроводниковые диоды
- •12. Вольт-амперная характеристика диода
- •13.Эквивалентная схема диода
- •14. Влияние температуры на вах диода
- •15.Выпрямительные диоды
- •16.Импульсные диоды
- •17. Диоды Шотки.
- •18. Стабилитроны и стабисторы
- •19.Варикапы
- •20.Туннельные и обращенные диоды
- •21.Маркировка полупроводниковых диодов
- •22.Биполярные транзисторы
- •23.Основные соотношения для токов в биполярном транзисторе.
- •24.Режимы работы биполярного транзистора
- •25. Схемы включения биполярного транзистора
- •26.Вольтамперные характеристики (вах) биполярного транзистора об
- •При подаче запирающего напряжения на коллектор ( ), входные характеристики, незначительно смещаются влево, эффект модуляции ширины базы
- •27. Усилительные свойства и параметры биполярного транзистора, схема об
- •28. Статические вах биполярного транзистора в схеме с оэ
- •29. Усилительные свойства и параметры биполярного транзистора, схема оэ
- •30.Математическая модель транзистора
- •31.Физические эквивалентные схемы транзистора и их параметры
- •3 2.Формальные схемы замещения транзистора и их параметры
- •33.Влияние температуры на работу транзистора.
- •34.Предельно допустимые параметры транзистора
- •35.Полевые транзисторы
- •36. Устройство и принцип действия полевого транзистора
- •36 Продол Статические характеристики полевого транзистора с р-п переходом
- •37. Полевые транзисторы с изолированным затвором
- •39. Схемы включения полевого транзистора
- •40. Формальная схема замещения пол транз и ее дифф параметры
- •41. Физическая эквивалентная схема полевого транзистора
- •42. Система обозначения транзисторов
- •43. Тиристоры
- •44. Общая харка микроэлектронных устройств и интегральных микросхем
- •45. Полупроводниковые и гибридные интегральные микросхемы
- •46. Система обозначений интегральных микросхем
- •47. Усилители электрических сигналов. Структурная схема. Параметры и хар-ки
- •О сновные параметры и характеристики усилителя
- •48. Амплитудная характеристика
- •49. Искажение в усилителях и в электронных сигналах. Искажения в усилителях
- •5 0. Классификация усилителей электрических сигналов
- •51. Многокаскадные усилители электрических сигналов.
- •52. Режимы работы активных элементов усилительного каскада
- •5 3. Принцип и анализ работы усилительного каскада на биполярном
- •54. Способы задания раб. Режима актив элемента усил. Каскада и его стабилизация
- •55. Принцип и анализ работы усил каскада на биполярном транзисторе
- •56. Обратная связь в усилителях. Структурная схема и коэффициент усиления
- •57. Типы обратной связи
- •58. Влияние отрицательной обратной связи на параметры и характеристики
- •59. Устойчивость усилителей с обратной связью
- •60. Усилительные каскады на биполярных транзисторах с rc связью
- •61. Эквивалентная схема одиночного усилительного каскада
- •62. Амплитудно-фазочастотные характеристики усилителя на биполярном транзисторе rc-цепи
- •63. Импульсные и широкополосные усилители
- •Коррекция в области вч за счет введения частотно-зависимых эл-ов в коллекторную цепь
- •64. Избирательные усилители.Виды избирательских усилителей
- •65. Усилители мощности и их класификация
- •Выходная мощность:
- •Классификация усилителей мощности
- •66. Усилители мощности с трансформаторной связью
- •67. Бестранзисторные усилители мощности
- •68. Двухтактные безтрансформаторные усилители мощности
- •69. Усилители постоянного тока (упт)
- •70. Основные параметры дифференциального каскада
- •Упт с преобразованием частоты входного сигнала
- •71. Операционные усилителию Структурная схема. Классификация
- •72. Параметры и характеристики оу
- •Скорость нарастания выходного сигнала ,
- •73. Анализ устройств содержащих оу Понятие об идеальном оу. Операционном усилителе
- •74. Неивертирующий усилитель на оу
- •7 5. Инвертирующий усилитель.
- •76. Инвертирующий сумматор
- •77. Усилитель разности напряжения
- •78 Дифференцирующий усилитель
- •79 Интегрирующий усилитель
- •80 Компараторы напряжения
- •Н едостатком оу при использовании их в качестве компараторов является невысокое быстродействие переключения (из-за сложности схемы и большого числа активных элементов).
- •81 Разновидности схем компараторов
- •Двухвходовый инвертирующий компаратор
- •Двухвходовый неинвертирующий компаратор.
- •Одновходовый инвертирующий компаратор.
- •Одновходовый неинвертирующий компаратор. Разновидности схем компараторов
- •Двухвходовый инвертирующий компаратор
- •Двухвходовый неинвертирующий компаратор.
- •Одновходовый инвертирующий компаратор.
- •Одновходовый неинвертирующий компаратор.
- •82 Компараторы с положительной обратной связью
- •Инвертирующий компаратор с положительной обратной связью
- •84 Генераторы электрических сигналов
- •В зависимости от элементов, опредчастоту автогенератора, генераторы бывают:
- •85 Ацп Назначение и классификация
- •86 Цап Назначение и классификация
- •Основные параметры и характеристики цап
- •Наибольшее распространение получили цап параллельного типа с суммированием токов, т.К. Они обладают наилучшим быстродействием преобразования.
- •87 Выпрямительные устройства Однофазный однополупериодный выпрямитель
- •88 Однофазный двухполупериодный выпрямитель
- •89 Однофазный двухполупериодный выпрямитель с выводом средней точки
- •90 Стабилизаторы постоянного напряжения
- •Стабилизаторы постоянного напряжения
54. Способы задания раб. Режима актив элемента усил. Каскада и его стабилизация
В
предыдущей схеме рабочая точка БТ
задавалась двумя источниками ЭДС.
Применять два источника напряжения не
целесообразно т.к. это отдельные
устройства и требуют дополнительных
затрат. Для создания рабочей точки
транзистора обычно используют источник
Ек, а рабочую точку на базе задают с
помощью резисторов путем задания
необходимого тока базы или напряжения
база-эмиттер. Рассмотрим основные схемы.
1) Схема с фиксированным током базы Iб.рт..
В этой схеме рабочая точка задается током базы Iб.рт..
Его величина задается сопротивлением резистора Rб. Его величина выбирается из соотношения
Rб=(Eк-Uбэ рт)/Iб рт.
а величина резистора Rк выбирается из соотношения
Iк рт= ВIб рт отсюда, Uкэ рт= Eк- Rк Iк рт.
Преимущество схемы: простота схемы.
Недостаток: рабочая точка, т.е. Uкэ рт сильно зависит от температуры окружающей среды и параметров конкретного транзистора.
2.) Схема с резистивным делителем в цепи базы.
В этой схеме - R1, R2 – резистивный делитель цепи базы, с его помощью задается необходимая величина Uбэ рт. (Он делит напряжение Ек и получает необходимое напряжение на базе).
3.) Схема с эмиттерной стабилизацией рабочей точки.
RЭ – сопротивление эмиттерной цепи, с его помощью создается отрицательная обратная связь, которая стабилизирует положение рабочей точки. Схема работает так. С возрастанием температуры окружающей реды IК.РТ возрастает, это приводит к тому, что UКЭ.РТ уменьшается. Так происходило бы, если бы не было RЭ, а с RЭ происходит так. С возрастанием температуры IК.РТ возрастает (UК.РТ должно бы уменьшаться, но) IЭ.РТIК.РТ, при этом URЭ возрастает, а UБЭ.РТ=(UБ1-URЭ) уменьшается, уменьшение этого напряжения эквивалентно уменьшению IБ.РТ, что приводит к тому, что Ik0 уменьшается, а Uкэ остается постоянным, т. е. UКЭ.РТ = const.
4.) Схема с коллекторной стабилизацией рабочей точки.
В этой схеме рабочая точка задается током в цепи базы который возникает за счет обратной связи. Благодаря ему происходит стабилизация выходного напряжения при изменении температуры окружающей среды.
55. Принцип и анализ работы усил каскада на биполярном транзисторе
Составим схему на примере n-канального полевого транзистора с управляющим p-n-p переходом:
При составлении схемы на полевом транзисторе нужно помнить что:
1). Полярность питающего напряжения выбирается так, чтобы основные носители канала двигались к стоку.
2
).
Для управления выходным током, напряжение,
подаваемое на затвор n-канального
транзистора с управляющим p-n
переходом, должно быть отрицательным,
т.е. переход должен быть смещен в обратном
направлении.
Схема приведена на рис. 8. . В ней Rc - сопротивление цепи стока служит для преобразования выходного тока в выходное усиленное напряжение.
Rз – сопротивление цепи затвора, создает путь для протекания малого тока затвора в общею точку схемы.
Ru – сопротивление цепи истока, задает рабочую точку БТ. Оно выбирается из соотношения
UU.РТ=JС.РТRU;
Cp – конденсатор разделительный (разделяют, закрывают резистор).