
- •1) Физический смысл производной.
- •2) Геометрический смысл производной.
- •Производная обратной функции
- •Производные от обратных тригонометрических функций
- •Доказательство
- •14. Дифференцирование функций заданных параметрически
- •Доказательство
- •Определение экстремума
- •Точки экстремума
- •Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке
- •16.1.2. Простейшие рациональные дроби и их интегрирование
- •Интегрирование иррациональных выражений
- •1. Интегрирование дробно–линейных иррациональностей
- •Рационализируется подстановкой (или , или ).
- •Вычисление длины дуги плоской кривой
- •Предел и непрерывность функций нескольких переменных
- •Свойства частных решений однородного линейного дифференциального уравнения высшего порядка
- •Решение дифференциальных уравнений и их систем операционным методом
1.
Пусть
функция
определена в точке
и некоторой ее окрестности. Придадим
аргументу
приращение
такое,
что точка
попадает
в область определения функции.
Функция при этом получит приращение
.
ОПРЕДЕЛЕНИЕ
1. Производной
функции
в точке
называется
предел отношения приращения функции в
этой точке к приращению аргумента
,
при
(если
этот предел существует и конечен), т.е.
.
Обозначают: .
Производной функции в точке справа (слева) называется
(если этот предел существует и конечен).
Обозначают:
– производная y=f(x) в точке
справа,
– производная
y=f(x) в точке
слева.
1) Физический смысл производной.
Если
функция y = f(x) и ее аргумент x являются
физическими величинами, то производная
– скорость изменения переменной y
относительно переменной x в точке
.
Например, если S = S(t) – расстояние,
проходимое точкой за время t, то ее
производная
–
скорость в момент времени
.
Если q = q(t) – количество электричества,
протекающее через поперечное сечение
проводника в момент времени t,
то
– скорость изменения количества
электричества в момент времени
,
т.е. сила тока в момент времени
.
2) Геометрический смысл производной.
Пусть
–
некоторая кривая,
–
точка на кривой
.
Любая прямая, пересекающая не менее чем в двух точках называется секущей.
Касательной
к кривой
в
точке
называется
предельное положение секущей
,
если точка
стремится
к
,
двигаясь по кривой.
Из определения очевидно, что если касательная к кривой в точке существует, то она единственная
Рассмотрим
кривую y = f(x) (т.е. график функции
y = f(x)). Пусть в точке
он
имеет невертикальную касательную
.
Ее уравнение:
(уравнение
прямой, проходящей через точку
и
имеющую угловой коэффициент k).
По
определению углового коэффициента
,
где
–
угол наклона прямой
к оси
.
Пусть
–
угол наклона секущей
к
оси
,
где
.
Так как
–
касательная, то при
⇒
⇒
.
Следовательно,
.
Таким образом, получили, что – угловой коэффициент касательной к графику функции y = f(x) в точке (геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой y = f(x) в точке можно записать в виде
2.
Определение Функция y=f(x) называется дифференцируемой в точке x0, если ее приращение Δy в точке x0 может быть представлено в виде: Δy=A·Δx+α(Δx)·Δx, где A -- некоторое число, независящее от Δx, а α(Δx)-- бесконечно малая функция от переменной Δx, т.е. limΔx→0α(Δx)=0.
Теорема Для того, чтобы функция y=f(x) была дифференцируема в точке x0, необходимо и достаточно, чтобы она в этой точке имела конечную производную. Доказательство Необходимость. Предположим: функция дифференцируема в точке x0, т.е. Δy=A·Δx+α(Δx)·Δx. Разделив обе части данного равенства на Δx, получим: ΔxΔy=A+α(Δx). Из определения производной функции в точке: y/(x0)=limΔx→0ΔxΔy=limΔx→0(A+α(Δx))=A.
Т.е. получили, что существует конечная производная функции в точке x0 и y/(x0)=A. Достаточность. Пусть существует конечная производная y/(x0)∈R . Покажем дифференцируемость функции. y/(x0)=limΔx→0ΔxΔy.
Если функция f(x) имеет конечный предел b при Δx→0 , то ее можно представить: f(x)=b+α(x) (α(x)→0) . Исходя из этого: ΔxΔy=y/(x0)+α(Δx), где limΔx→0α(Δx)=0, Δy=y/(x0)·Δx+α(Δx)·Δx→ A=y/(x0) . Теорема доказана.
Определение. Дифференциалом функции y=f(x) в точке x0 называется главная линейная относительноΔx часть приращения функции Δy в данной точке.
3.
ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ
Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.
Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy≈dyили Δy»f'(x0)·Δx.
Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)≈f'(x0)·Δx.
Откуда
f(x) ≈ f(x0) + f'(x0)·Δx
4.
Уравнение касательной
Пусть функция задается уравнением y=f(x), нужно написать уравнение касательной в точке x0. Из определения производной:
y/(x)=limΔx→0ΔyΔx
Δy=f(x+Δx)−f(x).
Уравнение касательной к графику функции: y=kx+b (k,b=const). Из геометрического смысла производной: f/(x0)=tgα=k Т.к. x0 и f(x0)∈ прямой, то уравнение касательной записывается в виде: y−f(x0)=f/(x0)(x−x0) , или
y=f/(x0)·x+f(x0)−f/(x0)·x0.
Уравнение нормали
Нормаль -- это перпендикуляр к касательной (см. рисунок). Исходя из этого:
tgβ=tg(2π−α)=ctgα=1tgα=1f/(x0)
Т.к. угол наклона нормали -- это угол β1, то имеем:
tgβ1=tg(π−β)=−tgβ=−1f/(x).
Точка (x0,f(x0))∈ нормали, уравнение примет вид:
y−f(x0)=−1f/(x0)(x−x0).
5.
Теорема (необходимое условие дифференцируемости функции). Если функция дифференцируема в точке, то она непрерывна в этой точке.
Доказательство. Пусть
функция у=f(x) дифференцируема
в точке х0.
Дадим в этой точке аргументу приращение х.
Функция получит приращение у.
Найдем
.
.
Следовательно, у=f(x) непрерывна в точке х0.
Следствие. Если х0 – точка разрыва функции, то в ней функция не дифференцируема.
Утверждение, обратное теореме, не верно. Из непрерывности не следует дифференцируемость.
Пример. у=|х| , х0=0.
х>0,
;
х<0,
.
В точке х0=0 функция непрерывна, но производной не существует.
6.
"Двухслойная" сложная функция записывается в виде
где u
= g(x) -
внутренняя функция, являющаяся, в свою
очередь, аргументом для внешней
функции f.
Если f и g -
дифференцируемые функции, то сложная
функция
также
дифференцируема по x и
ее производная равна
Данная формула показывает, что производная сложной функции равна произведению производной внешней функции на производную от внутренней функции. Важно, однако, что производная внутренней функции вычисляется в точке x, а производная внешней функции - в точке u = g(x)!
7.