Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Predmet_teorii_veroyatnostey.docx
Скачиваний:
8
Добавлен:
26.09.2019
Размер:
283.19 Кб
Скачать
      1. Нормальный закон распределения. Параметры.

Нормальное распределение, также называемое гауссовым распределением или распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия.

Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в статистической физике. Физическая величина, подверженная влиянию значительного числа независимых факторов, способных вносить с равной погрешностью положительные и отрицательные отклонения, вне зависимости от природы этих случайных факторов, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из названий этого распределения вероятностей).

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

      1. Вероятность попадания в заданный интервал нормальной случайной величины.

Как уже было установлено, вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу , равна определенному интегралу от плотности распределения, взятому в соответствующих пределах: . Для нормально распределенной случайной величины соответственно получим: . Преобразуем последнее выражение, введя новую переменную . Следовательно, показатель степени выражения, стоящего под интегралом преобразуется в: . Для замены переменной в определенном интеграле еще необходимо заменить дифференциал и пределы интегрирования, предварительно выразив переменную из формулы замены: ; ; – нижний предел интегрирования; – верхний предел интегрирования; (для нахождения пределов интегрирования по новой переменной в формулу замены переменной были подставлены и – пределы интегрирования по старой переменной ). Подставим все в последнюю из формул для нахождения вероятности: где – функция Лапласа. Вывод: вероятность того, что нормально распределенная случайная величина примет значение, принадлежащее интервалу , равна: , где – математическое ожидание, – среднее квадратическое отклонение данной случайной величины.

 

      1. Нормальная кривая. Влияние параметров нормального распределения на форму нормальной кривой.

А в этом вопросе вообще какая то кривая информация… и ее слишком много для шпоры…

      1. Правило трех сигм.

Правило 3-х (трех “сигм”).

Пусть имеется нормально распределённая случайная величина  с математическим ожиданием, равным а и дисперсией 2. Определим веро­ятность попадания  в интервал (а – 3; а + 3), то есть вероятность того, что  принимает значения, отличающиеся от математического ожидания не более, чем на три среднеквадратических отклонения.

P(а – 3<  < а + 3)=Ф(3) – Ф(–3)=2Ф(3)

По таблице находим Ф(3)=0,49865, откуда следует, что 2Ф(3) практи­чески равняется единице. Таким образом, можно сделать важный вывод: нормальная случайная величина принимает значения, отклоняющиеся от ее математического ожидания не более чем на 3.

(Выбор числа 3 здесь условен и никак не обосновывается: можно было выбрать 2,8, 2,9 или 3,2 и получить тот же вероятностный результат. Учитывая, что Ф(2)=0,477, можно было бы говорить и о правиле 2–х “сигм”.)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]