Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры оригинал.doc
Скачиваний:
1
Добавлен:
24.09.2019
Размер:
675.84 Кб
Скачать

Билет №21.

Колебания под действием внешних периодически изменяющихся сил называются вынужденными колебаниями.

Диф. Уравнение вынужденных колебаний: , где , - коэффициент затухания.

Зависимость амплитуды вынужденных колебании от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значе­ния. Колебательная система оказывается особенно от­зывчивой на действие вынуждающей силы при этой ча­стоте. Это явление называется резонансом, а соот- ветствующая частота — резонансной частотой

Явление возрастания амплитуды установившихся вынужденных колебаний до максимального значения при приближении частоты изменения внешней силы к частоте свободных колебаний системы называется резонансом.          

Амплитуда при резонансе получается при подстановке найденного выражения ωрез в формулу для A(ω).

.

При β << ω0:

.

При ω = 0 отклонение системы от положения равновесия

.

Найдем отношение Aрез / A0при условии β << ω0:

,

здесь Q - добротность.

Добротность показывает (при β << ω0 ) во сколько раз амплитуда при резонансе больше смещения при ω = 0.

График зависимости A(ω) при различных β носят название резонансных кривых.

2. Связь:

Коэффициент вязкости не зависит от числа молекул в единицы объема, а значит и от давления(P=n*k*T), возрастает с температурой несколько быстрее, чем и прямо пропорционален . Коэффициент теплопроводности – зависит от давления и температуры так же, как и коэф-т вязкости, обратно пропорционален . Коэф-т диффузии обратно пропорционален числу молекул в единице объема, а значит и давлению, от температуры – такая же, обратно пропорционален .

Число Кнудсена - отношение длины свободного пробега к размеру тела L. Если kn>>1 – нет столкновений , kn<<1 – сплошился с ряда, kn>1 – промеж лугов

Поведение ультраразреженных газов отличается це­лым рядом особенностей. В условиях вакуума нельзя говорить о давлении одной части газа на другую. При обычных условиях молекулы часто сталкиваются друг с другом. Поэтому по любой поверхности, которой мож­но мысленно разграничить газ на две части, будет про­исходить обмен импульсами между молекулами, и, сле­довательно, одна часть газа будет действовать по по­верхности раздела на вторую с давлением р. В вакууме молекулы обмениваются импульсами только со стенка­ми сосуда, так что имеет смысл лишь понятие давления газа на стенку. Внутреннее трение в газе также отсут­ствует. Однако тело, движущееся в ультраразреженном газе, будет испытывать дейст­вие силы трения, обусловленной тем, что молекулы, ударяясь об это тело, будут изменять его импульс. Рассмотрим

этот вопрос более подробно.

Пусть в ультраразреженном газе движутся парал­лельно друг другу две пластинки (рис. 257). Скорости пластинок равны «i и и2. Взаимодействие между моле­кулой н пластинкой в момент удара приводит к тому, что молекула, отскочив от пластинки, имеет в дополне­ние к тепловой скорости составляющую, равную по ве­личине и направлению скорости пластинки.

Коэффициент теплопроводности, равный 1/6 ρϋcv, ока­зывается в ультраразреженном газе пропорциональным плотности газа. Следовательно, теплопередача от одной стенки к другой будет с понижением давления умень­шаться, в то время как теплопроводность газа при обыч-* ных условиях не зависит, как мы видели, от давления