Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры оригинал.doc
Скачиваний:
1
Добавлен:
24.09.2019
Размер:
675.84 Кб
Скачать

Билет №16

Момент импульса частицы. Моментом импульса L частицы A относительно точки О называется величина, равная векторному произведению радиус-вектора частицы на ее импульс p: L = [r·p] = [r·mv]. (7.1) В общем случае произвольного движения относительно точки О модуль момента импульса частицы равен: L = r·m·v·sin(a) = R·m·v,где R - плечо импульса частицы относительно точки О .К определению момента импульса частицы, совершающей вращательное движение относительно оси. Пусть частица массы m совершает вращательное движение вокруг некоторой произвольной оси Z с угловой скоростью w .Вектор момента импульса относительно произвольной точки О, расположенной на этой оси, как следует из рис. 7.2, составляет с осью вращения угол b и его направление не совпадает с направлением вектора угловой скорости. Учитывая, что вектора r и v взаимно перпендикулярны, получим выражение для расчета численного значения момента импульса частицы: L = r·m·v. Моментом импульса Lz частицы относительно произвольной оси Z называется проекция вектора L на эту ось. Как видно Lz = L·cos(b) = R·m·v. К определению момента импульса твердого тела. Момент импульса твердого тела. Рассмотрим твердое тело, совершающее вращательное движение вокруг некоторой оси со скоростью w. Моментом импульса тела называется величина, равная векторной сумме моментов импульса его частей: L = SLi = S[ri·pi] = S[ri·mivi]. Очевидно, что как и для случая с частицей проекция момента импульса iой части тела на ось Z равняется:Lzi = Ri·mi·vi = Ri2·mi·wz.Произведя суммирование по всему телу и исходя из определения момента инерции, получим выражение для проекции момента импульса тела на ось Z:Lz = SLzi = SLi·cos(bi) = SRi2·mi·wz = I·wz. При суммировании мы учли, что значения проекций векторов моментов импульса каждой части тела на ось Z имеют одинаковые знаки, т.к. для них углы между вектором угловой скорости и моментами импульсов всегда острые. Заметим, что выражение не зависит от выбора точки О на оси вращения. В случае несимметричного тела вектор L направлен под произвольным углом к оси вращения и прецессирует вокруг нее. В случае симметричного тела и нахождения точки О на оси симметрии направление момента импульса тела совпадает с направлением его угловой скорости, т.к. всегда найдется пара симметричных точек, для которых составляющие вектора L, в направлении перпендикулярном оси вращения, скомпенсированы.Следовательно, для симметричного тела, вращающегося вокруг оси симметрии справедливо векторное равенство: L = I·w. Момент импульса симметричного тела, вращающегося вокруг оси симметрии, равен произведению его момента инерции относительно этой оси на угловую скорость. Заметим, что выражение аналогично определению импульса тела в случае его поступательного движения точки p = m·v. Следовательно, момент импульса твердого тела - есть мера его вращательного движения.

Случайная величина - величина, измеряемая в исследуемых экспериментах, исходы которых заранее неизвестны и зависят от случайных причин. дискретная  принимает конечное или счетное множество значений;  задается законом распределения, который позволяет установить вероятность любого возможного значения случайной величины: P(X=xk)=pk

непрерывная   принимает все значения из некоторого конечного или бесконечного промежутка;  характеризуется плотностью вероятности (плотностью распределения) f(x) - непрерывной функцией, позволяющей вычислить вероятность попадания величины X на интервал (a,b): P(a<X<b) =интеграл от a до b f(x)dx

Пусть в результате измерений было установлено, что величина x c вероятностью dP(x)попадает в интервал значений от x до x+dx. Тогда можно ввести функцию f(x), характеризующую плотность распределения вероятностей:      Эта функция в физике обычно называется функцией распределения. Функция распределения f(x) должна удовлетворять условию: f(x)>=0, так как вероятность попадания измеренного значения в интервал от x до x+dx не может быть отрицательной величиной. Вероятность того, что измеренное значение попадет в интервал равна .Соответственно, вероятность попадания измеренного значения в весь интервал возможных значений равна единице: . Это выражение называется условием нормировки функции распределения. В частности по этой формуле может быть найдено среднее значение параметра x:

Флуктуации (от лат. fluctuatio - колебание) - случайные колебания, отклонения (от средних показателей); несистематические изменения каких-либо явлений или процессов, вызываемые случайными факторами.