
- •Пластиды растительной клетки. Типы пластит и их функции. Строение хлоропластов. Предположительная эволюция и роль зеленых пластид в биосфере.
- •Эндоплазматическая сеть, комплеск Гольджи и вакуоли, определение, структура, функции. Роль биологических мембран в строении данных органелл.
- •Понятие наследственной информации, химический состав и морфологическая структура хромосом, роль нуклеиновых кислот в передаче наследственной информации. Определение генотипа и фенотипа.
- •Роль белка в жизни клетки и основные этапы его синтеза. Строение и функции рибосом. Роль рибосом в процессе синтеза белка.
- •Митоз. Биологический смысл и схема эквационного деления клетки, процессы интерфазы, редупликация хромосом.
- •Мейоз. Биологический смысл и схема редукционного деления клетки. Процессы интерфазы мейоза, конъюгация и кроссинговер.
- •Химический состав, структура, этапы образования и основные видоизменения клеточной стенки. Типы и строение пор. Плазмодесмы.
- •Понятие и классификация растительных тканей, особенности клеточного строения основных тканей.
- •Меристемы. Функции и классификация меристем. Клеточное строение апекса и кончика корня. Пространственная и клеточная схемы последовательности взаимопревращений меристем.
- •Характеристика камбия. Особенности строения и функционирования камбиальных клеток, инициали и производные камбия. Роль камбия в образовании тканей растения.
- •Токи веществ в растении и ткани, их осуществляющие. Пучковое и не пучковое строение побега. Общая характеристика, происхождение и функции проводящих тканей.
- •Запасающие ткани, их строение, расположение и функции. Типы запасающих тканей.
- •Радиальные лучи, образование, расположение, сравнительная характеристика радиальных лучей голосеменных и покрытосеменных растений на поперечном и продольном срезах.
- •Трахеиды и сосуды, их образование, строение и функции.
- •Ситовидные элементы, строение, расположение, функции. Флоэма и луб древесных растений.
- •Первичные и вторичные покровные ткани. Образование, строение, расположение и функции эпидермы, эпиблемы и корки.
- •Механические ткани. Типы механических тканей, их строение и расположение в теле растения. Сравнительная прочность механических волокон голосеменных и покрытосеменных растений.
- •Сравнение анатомического строения игольчатого и пластинчатого листа.
- •Смоляные ходы, образование, строение, расположение. Роль смолостной системы и живицы для повышения устойчивости древесного растения.
- •Систематика растений. Основные этапы развития систематики растений и типы систем, таксономия и номенклатура, основные таксонометрические категории систематики растений. Значение трудов к. Линнея.
- •Классификация растений. «Система живой природы» как пример филогенетической классификации. Основные надцарства и царства живых организмов. Классификация царства Растения.
- •Царство Грибы, основные признаки и классификация царства. Общая характеристика (строение, размножение) и значение грибов в биосфере и хозяйственной деятельности человека.
- •26. Сравнительная характеристика классов Сумчатые и Базидиальные грибы. Роль высших грибов в лесных экосистемах.
- •Отдел Лишайники, общая характеристика отдела. Морфологическое, анатомическое строение слоевища, особенности размножения лишайников, представители и значение.
- •Отдел Мхи. Общая харакиеристика и классификация отдела. Особенности размножения, цикл развития, представители и значение мхов.
- •Отдел Плауны. Общая характеристика и классификация отдела. Особенности размножения, цикл развития равноспоровых плаунов, представители, значение в природе.
- •Отдел Хвощи, общая характеристика отдела. Особенности размножения, цикл развития, представители, значение хвощей в природе.
- •Отдел Папоротники, основные классы и общая характеристика отдела. Особенности размножения, цикл развития, представители, значение папоротников в природе.
Митоз. Биологический смысл и схема эквационного деления клетки, процессы интерфазы, редупликация хромосом.
Мито́з (греч. μιτος — нить) — непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.
В результате митоза каждая из двух дочерних молекул обязательно включает одну старую спираль и одну новую. Новая молекула абсолютно идентична старой.
В этом заключается глубокий биологический смысл: таким путем в бесчисленных клеточных поколениях сохраняется преемственность генетической информации.
Профаза — спирализация хромосом, начало формирования веретена деления; в мейозе, кроме того, происходит конъюгация гомологичных хромосом с образованием бивалентов;
метафаза — в митозе в экваториальной плоскости веретена деления располагаются отдельные хромосомы числом 2n, в мейоэе в плоскости экватора выстраивается п бивалеитов;
анафаза —в митозе в результате расщепления центромер дочерние хромосомы (бывшие сестринские хроматиды) расходятся к разным полюсам (по 2n к каждому полюсу), в мейозе разрушаются бивалеиты и гомологи расходятся к разным полюсам (по одному из каждой лары); формируется гаплоидный набор хромосом;
телофаза—в митозе формируются ядра дочерних клеток, в мейозе телофаза сокращена во времени, так как не происходит полной деспирализации хромосом и клетки сразу переходят ко второму делению.
Результаты митоза — сохранение в дочерних клетках диплоидного набора хромосом (2n2с); результаты первого мейотического деления—образование клеток с гаплоидным набором двунитчатых хромосом.
Процесс самовоспроизведения — редупликации хромосом осуществляется в период подготовки клетки к митозу — в интерфазе.
Мейоз. Биологический смысл и схема редукционного деления клетки. Процессы интерфазы мейоза, конъюгация и кроссинговер.
Мейоз (от греч. meiosis — уменьшение) или редукционное деление клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза).
Биологическое значение мейоза:
1) является основным этапом гаметогенеза;
2) обеспечивает передачу генетической информации от организма к организму при половом размножении;
3) дочерние клетки генетически не идентичны материнской и между собой.
Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр.
В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом.
В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).
В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.
В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).
Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.
В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).
Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу.
Конъюгация (от лат. conjugatio — соединение) — это процесс точного и тесного сближения гомологичных хромосом.
Кроссинго́вер (другое название в биологии перекрёст) — процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер.