
- •1. Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток. Анизотропия. Полиморфизм.
- •2. Строение реальных кристаллических материалов. Дефекты кристаллического строения.
- •3. Теоретическая и реальная прочность. Пути повышения прочности металлов и сплавов.
- •4. Понятие о сплавах. Твердые растворы, механические смеси, химические соединения.
- •5)Экспериментальное построение диаграмм состояния.
- •6) Правила расшифровки диаграмм состояния двойных сплавов. Основные типы диаграмм состояния и их расшифровка.
- •7) Возможности термической обработки в связи с диаграммами состояния сплавов (диффузионный отжиг, отжиг для измельчения зерна, закалка, отпуск и старение).
- •8) Отжиг двойных сплавов. Виды и цели отжига.
- •9) Закалка двойных сплавов. Виды закалки (на пересыщенный твердый раствор, на мартенсит). Отпуск (старение).
- •10) Диаграмма состояния сплавов железо-цементит. Расшифровка, практическое применение.
- •11) Классификация сплавов по диаграмме железо-цементит (стали, чугуны). Маркировка углеродистых сталей, их классификация по структуре и назначению.
- •12) Чугуны (белые, серые, ковкие и высокопрочные). Маркировка, структура, свойства и применение чугунов.
- •13)Предварительная термическая обработка стальных заготовок (нормализация, отжиг).
- •14)Предварительная термическая обработка углеродистых инструментальных сталей.
- •15) Перегрев и пережог стали, их влияние на механические свойства стали.
- •16) Диаграмма изотермического распада переохлажденного аустенита (с-образные кривые). Критическая скорость закалки стали.
- •17)Окончательная термическая обработка стальных изделий (вал, пружина, инструмент).
- •19)Закалка сталей. Внутренние напряжения при закалке.
- •22)Отпуск закаленных углеродистых сталей. Виды и назначение отпуска. Влияние отпуска на структуру и механические свойства закаленной стали.
- •18) Влияние содержания углерода на твердость закаленной и отожженной сталей.
- •20)Закалочные среды. Способы закалки.
- •21) Дефекты при закалке сталей (закалка с перегревом, неполная закалка).
- •23) Основные характеристики прочности металлов при статистических нагрузках (σΒ, στ, δ, ψ). Ударная вязкость (kcu).
- •24) Прокаливаемость сталей. Влияние несквозной прокаливаемости на механические свойства сталей. Критический диаметр (Dкр). Метод торцовой закалки.
- •25) Термическая обработка конструкционных (изделие типа вал, шестерня) и рессорно-пружинных сталей с учетом прокаливаемости.
- •26) Легированные стали. Фазы, образуемые легирующими элементами в сплавах на основе железа. Влияние легирующих элементов на диаграмму изотермического распада аустенита и прокаливаемость.
- •27) Влияние легирующих элементов на критические точки железа и механические характеристики феррита.
- •28) Классификация легированных сталей по структуре, маркировка и области их применения.
- •29) Конструкционные легированные стали и их термообработка (цементуемые, улучшаемые. Рессорно-пружинные стали).
- •30. Дефекты легированных сталей (дендритная ликвация, отпускная хрупкость, флокены).
- •31. Коррозионно-стойкие (нержавеющие) стали: хромистые (ферритный и мартенситный класс) и хромоникелевые (аустенитный класс). Маркировка, структура, свойства, области применения.
- •32) Термическая обработка коррозийно-стойких хромистых и хромоникелевых аустенитных сталей.
- •33) Межкристаллическая коррозия аустенитных и ферритных коррозионностойких сталей и способы ее устранения.
- •34)Износостойкие стали, их термическая обработка, области применения.
- •1)Графитизированная сталь.
- •2)Высокомарганцовистая сталь.
- •35) Шарикоподшипниковые стали. Маркировка, термическая обработка.
- •36) Инструментальные легированные стали перлитного класса. Маркировка, термическая обработка.
- •37) Быстрорежущие стали и их термическая обработка. Маркировка, области применения.
- •38) Твердые сплавы. Марки. Применение.
- •39) Теплостойкость инструментальных углеродистых и легированных сталей и твердых сплавов.
- •40) Наклеп. Влияние степени наклепа на структуру и механические свойства стали.
- •42) Способы упрочнения стальных изделий. Наклеп.
- •41) Рекристаллизация. Размер зерна при рекристаллизации. Критическая степень наклепа.
- •43) Поверхностная закалка (твч), режим термической обработки.
- •44) Цементация. Виды цементации. Термическая обработка цементированных изделий.
- •45) Азотирование. Стали для азотирования. Режим термической обработки.
- •46) Цианирование сталей.
- •47) Диффузионная металлизация (алитирование, хромирование, силицирование, борирование).
- •48) Алюминий и его сплавы. Деформируемые и литейные сплавы на основе алюминия (дюрали и силумины). Термическая обработка, структура, свойства, применение.
- •49)Титан и его сплавы. Конструкционные титановые сплавы, их термическая обработка, структура, свойства.
- •50) Подшипниковые сплавы (чугун, бронза, баббиты). Баббиты, маркировка, структура, применение.
- •51) Медь и ее сплавы. Латуни, бронзы. Структура, свойства, маркировка, применение.
43) Поверхностная закалка (твч), режим термической обработки.
Для получения большой твердости в поверхностном слое детали с сохранением вязкой сердцевины (что обеспечивает износоустойчивость и одновременно высокую динамическую прочность) применяют поверхностную закалку. Несмотря на большое разнообразие методов поверхностной закалки, все они заключаются в нагреве только поверхностного слоя с последующей закалкой детали.
Сущность любого способа поверхностной закалки состоит в том, что поверхностные слои детали быстро нагреваются выше критических точек и создается резкий градиент температур по сечению (рис. 249). Если нагрев прервать и провести быстрое охлаждение, то слой металла, нагретый выше Ас3 (I), получит полную закалку: слой, нагретый выше Ас1 но ниже Ас3 (И) —неполную закалку, а сердцевина (III) или вовсе не нагреется, или нагреется только ниже Ас1 закалки не получит.
Электрический ток, проходя по детали как по проводнику, встречает сопротивление, в результате чего деталь нагревается. Количество тепла Q можно подсчитать по известной формуле (Дж):
Q =0,239*4,184*I2*R*t.
Изменяя силу тока I, можно получить любое количество тепла и, следовательно, любую температуру и любую скорость нагрева. Сопротивление проводника металла R зависит от рода металла. Время воздействия тока t для увеличения производительности процесса берут небольшим.
Характерной особенностью электротермической обработки является нагрев с очень большой скоростью, в сотни и тысячи раз превышающей скорость нагрева в печи от внешнего источника тепла. Нагреваются только gоверхностные слои металла, чем больше частота тока, тем на меньшую глубину прогревается, следовательно, и закаливается изделие.
Для нагрева электротоком в настоящее время пользуются преимущественно токами высокой частоты.
Основное условие правильного и по возможности равномерного индукционного нагрева —создание для каждой детали индуктора соответствующей формы и очертаний. Индуктор изготавливают в виде петли или витка из трубок красной меди внутри индуктора помещают нагреваемую деталь, затем нагреваемую часть детали перемещают из индуктора в душирующее устройство, где деталь закаливается
Преимущества высокочастотного нагрева: а) высокая производительность; б) отсутствие выгорания углерода и других элементов, а также отсутствие заметного окисления и образования окалины; в) минимальное коробление; г) глубина закаленного слоя может довольно точно регулироваться.
Для поверхностной закалки применяют обычные углеродистые стали с содержанием углерода 0,4 % и выше. Легированные стали применять, как правило, не следует, так как глубокая прокаливаемость, которая достигается легированием, здесь совершенно не нужна. Более того, в ряде случаев требуются стали пониженной прокаливаемости.
Углеродистые стали подвергают нормализации на воздухе, а после ТВЧ (вода) низкому отпуску. В структуре на поверхности образовывается мартенсит, а в сердцевине- феррит с перлитом.
Легированные стали подвергают закалке в масле и высокому отпуску, а после ТВЧ (масло) – низкому отпуску. Структура на поверхности – отпущенный мартенсит, в сердцевине – сорбит.