
- •1. Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток. Анизотропия. Полиморфизм.
- •2. Строение реальных кристаллических материалов. Дефекты кристаллического строения.
- •3. Теоретическая и реальная прочность. Пути повышения прочности металлов и сплавов.
- •4. Понятие о сплавах. Твердые растворы, механические смеси, химические соединения.
- •5)Экспериментальное построение диаграмм состояния.
- •6) Правила расшифровки диаграмм состояния двойных сплавов. Основные типы диаграмм состояния и их расшифровка.
- •7) Возможности термической обработки в связи с диаграммами состояния сплавов (диффузионный отжиг, отжиг для измельчения зерна, закалка, отпуск и старение).
- •8) Отжиг двойных сплавов. Виды и цели отжига.
- •9) Закалка двойных сплавов. Виды закалки (на пересыщенный твердый раствор, на мартенсит). Отпуск (старение).
- •10) Диаграмма состояния сплавов железо-цементит. Расшифровка, практическое применение.
- •11) Классификация сплавов по диаграмме железо-цементит (стали, чугуны). Маркировка углеродистых сталей, их классификация по структуре и назначению.
- •12) Чугуны (белые, серые, ковкие и высокопрочные). Маркировка, структура, свойства и применение чугунов.
- •13)Предварительная термическая обработка стальных заготовок (нормализация, отжиг).
- •14)Предварительная термическая обработка углеродистых инструментальных сталей.
- •15) Перегрев и пережог стали, их влияние на механические свойства стали.
- •16) Диаграмма изотермического распада переохлажденного аустенита (с-образные кривые). Критическая скорость закалки стали.
- •17)Окончательная термическая обработка стальных изделий (вал, пружина, инструмент).
- •19)Закалка сталей. Внутренние напряжения при закалке.
- •22)Отпуск закаленных углеродистых сталей. Виды и назначение отпуска. Влияние отпуска на структуру и механические свойства закаленной стали.
- •18) Влияние содержания углерода на твердость закаленной и отожженной сталей.
- •20)Закалочные среды. Способы закалки.
- •21) Дефекты при закалке сталей (закалка с перегревом, неполная закалка).
- •23) Основные характеристики прочности металлов при статистических нагрузках (σΒ, στ, δ, ψ). Ударная вязкость (kcu).
- •24) Прокаливаемость сталей. Влияние несквозной прокаливаемости на механические свойства сталей. Критический диаметр (Dкр). Метод торцовой закалки.
- •25) Термическая обработка конструкционных (изделие типа вал, шестерня) и рессорно-пружинных сталей с учетом прокаливаемости.
- •26) Легированные стали. Фазы, образуемые легирующими элементами в сплавах на основе железа. Влияние легирующих элементов на диаграмму изотермического распада аустенита и прокаливаемость.
- •27) Влияние легирующих элементов на критические точки железа и механические характеристики феррита.
- •28) Классификация легированных сталей по структуре, маркировка и области их применения.
- •29) Конструкционные легированные стали и их термообработка (цементуемые, улучшаемые. Рессорно-пружинные стали).
- •30. Дефекты легированных сталей (дендритная ликвация, отпускная хрупкость, флокены).
- •31. Коррозионно-стойкие (нержавеющие) стали: хромистые (ферритный и мартенситный класс) и хромоникелевые (аустенитный класс). Маркировка, структура, свойства, области применения.
- •32) Термическая обработка коррозийно-стойких хромистых и хромоникелевых аустенитных сталей.
- •33) Межкристаллическая коррозия аустенитных и ферритных коррозионностойких сталей и способы ее устранения.
- •34)Износостойкие стали, их термическая обработка, области применения.
- •1)Графитизированная сталь.
- •2)Высокомарганцовистая сталь.
- •35) Шарикоподшипниковые стали. Маркировка, термическая обработка.
- •36) Инструментальные легированные стали перлитного класса. Маркировка, термическая обработка.
- •37) Быстрорежущие стали и их термическая обработка. Маркировка, области применения.
- •38) Твердые сплавы. Марки. Применение.
- •39) Теплостойкость инструментальных углеродистых и легированных сталей и твердых сплавов.
- •40) Наклеп. Влияние степени наклепа на структуру и механические свойства стали.
- •42) Способы упрочнения стальных изделий. Наклеп.
- •41) Рекристаллизация. Размер зерна при рекристаллизации. Критическая степень наклепа.
- •43) Поверхностная закалка (твч), режим термической обработки.
- •44) Цементация. Виды цементации. Термическая обработка цементированных изделий.
- •45) Азотирование. Стали для азотирования. Режим термической обработки.
- •46) Цианирование сталей.
- •47) Диффузионная металлизация (алитирование, хромирование, силицирование, борирование).
- •48) Алюминий и его сплавы. Деформируемые и литейные сплавы на основе алюминия (дюрали и силумины). Термическая обработка, структура, свойства, применение.
- •49)Титан и его сплавы. Конструкционные титановые сплавы, их термическая обработка, структура, свойства.
- •50) Подшипниковые сплавы (чугун, бронза, баббиты). Баббиты, маркировка, структура, применение.
- •51) Медь и ее сплавы. Латуни, бронзы. Структура, свойства, маркировка, применение.
38) Твердые сплавы. Марки. Применение.
Рабочая температура резания инструмента из твердых сплавов может быть увеличена до 800—1000 °С, тогда как для инструмента из быстрорежущей стали разогрев режущей кромки выше 650 °С недопустим.
Значит, имея инструмент из твердых сплавов, можно работать на более высоких скоростях резания, чем с инструментом из быстрорежущей стали, хотя при меньшей подаче. В настоящее время для скоростного резания металлов применяют инструмент, оснащенный твердыми сплавами.
Твердость металлокерамических твердых сплавов очень высокая, так как эти сплавы состоят из 90—95 % карбидов (остальное — кобальтовая связка) — обладающих исключительно высокой твердостью, поэтому спеченные детали из твердых сплавов нельзя подвергать никакой другой механической обработке, кроме шлифования. Инструмент не изготавливают целиком из твердого сплава — из него изготавливают лишь режущую часть; пластинку из твердого сплава прикрепляют к державке из обычной конструкционной или инструментальной стали. Подобным образом сейчас изготавливают резцы и многие другие металлорежущие инструменты высокой производительности (фрезы, сверла и т. д.).
По структуре и природе карбидных фаз современные твердые сплавы могут быть разделены на три группы
К первой группе относятся однокарбидные твердые сплавы, состоящие из карбида вольфрама (так называемая группа ВК) Внутри группы сплавы подразделяются на марки (ВКЗ, ВК6, ВК8, ВКЮ), различающиеся содержанием кобальта (в сплаве ВК8, 8 % Со, в сплаве ВК6 6 % и т д ). Чем больше в сплаве кобальта тем он менее тверд и размягчается при более низкой температуре, но и менее хрупок. Прочность твердых сплавов из за хрупкости меньше прочности быстрорежущей стали.
Ко второй группе твердых сплавов относят двухкарбидные сплавы — группа ВТК Наиболее типичным представителем этой группы сплавов является сплав Т15К6.
К третьей группе относятся однокарбидные сплавы, состоящие из карбида (Ti, W) С группа ТК - это сплавы Т30К4 и Т60К6. При таком количестве карбида титана в шихте (т. е. 30 и 60 %) в нем полностью растворен весь вольфрам.
39) Теплостойкость инструментальных углеродистых и легированных сталей и твердых сплавов.
Теплостойкость - способность сохранять твердость при длительном нагреве в процессе работы. По теплостойкости различают три группы инструментальных сталей для режущего инструмента: нетеплостойкие, полутеплостойкие и теплостойкие.
При нагреве до 200—300 °С нетеплостойких сталей в процессе резания углерод выделяется из мартенсита закалки и начинается коагуляция карбидов цементитного типа. Это приводит к потере твердости и износостойкости режущего инструмента. К нетеплостойким относятся углеродистые и низколегированные стали. Полутеплостойкие стали, к которым относятся некоторые среднелегированные стали, например 9Х5ВФ, сохраняют твердость до температур 300—500 °С. Теплостойкие стали сохраняют твердость и износостойкость при нагреве до температур 600 °С.
Углеродистые и низколегированные стали имеют сравнительно низкую теплостойкость и невысокую прокаливаемость, поэтому их используют для более легких условий работы при малых скоростях резания. Средне и высоко легированные, имеют более высокую теплостойкость и прокаливаемость, их применяют для более тяжелых условий работы.
Твердые сплавы обладают также высокой теплостойкостью они сохраняют режущие свойства при нагреве до температуры 900—1000° С. С уменьшением в сплаве содержания карбида титана теплостойкость твердого сплава понижается.