
- •1. Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток. Анизотропия. Полиморфизм.
- •2. Строение реальных кристаллических материалов. Дефекты кристаллического строения.
- •3. Теоретическая и реальная прочность. Пути повышения прочности металлов и сплавов.
- •4. Понятие о сплавах. Твердые растворы, механические смеси, химические соединения.
- •5)Экспериментальное построение диаграмм состояния.
- •6) Правила расшифровки диаграмм состояния двойных сплавов. Основные типы диаграмм состояния и их расшифровка.
- •7) Возможности термической обработки в связи с диаграммами состояния сплавов (диффузионный отжиг, отжиг для измельчения зерна, закалка, отпуск и старение).
- •8) Отжиг двойных сплавов. Виды и цели отжига.
- •9) Закалка двойных сплавов. Виды закалки (на пересыщенный твердый раствор, на мартенсит). Отпуск (старение).
- •10) Диаграмма состояния сплавов железо-цементит. Расшифровка, практическое применение.
- •11) Классификация сплавов по диаграмме железо-цементит (стали, чугуны). Маркировка углеродистых сталей, их классификация по структуре и назначению.
- •12) Чугуны (белые, серые, ковкие и высокопрочные). Маркировка, структура, свойства и применение чугунов.
- •13)Предварительная термическая обработка стальных заготовок (нормализация, отжиг).
- •14)Предварительная термическая обработка углеродистых инструментальных сталей.
- •15) Перегрев и пережог стали, их влияние на механические свойства стали.
- •16) Диаграмма изотермического распада переохлажденного аустенита (с-образные кривые). Критическая скорость закалки стали.
- •17)Окончательная термическая обработка стальных изделий (вал, пружина, инструмент).
- •19)Закалка сталей. Внутренние напряжения при закалке.
- •22)Отпуск закаленных углеродистых сталей. Виды и назначение отпуска. Влияние отпуска на структуру и механические свойства закаленной стали.
- •18) Влияние содержания углерода на твердость закаленной и отожженной сталей.
- •20)Закалочные среды. Способы закалки.
- •21) Дефекты при закалке сталей (закалка с перегревом, неполная закалка).
- •23) Основные характеристики прочности металлов при статистических нагрузках (σΒ, στ, δ, ψ). Ударная вязкость (kcu).
- •24) Прокаливаемость сталей. Влияние несквозной прокаливаемости на механические свойства сталей. Критический диаметр (Dкр). Метод торцовой закалки.
- •25) Термическая обработка конструкционных (изделие типа вал, шестерня) и рессорно-пружинных сталей с учетом прокаливаемости.
- •26) Легированные стали. Фазы, образуемые легирующими элементами в сплавах на основе железа. Влияние легирующих элементов на диаграмму изотермического распада аустенита и прокаливаемость.
- •27) Влияние легирующих элементов на критические точки железа и механические характеристики феррита.
- •28) Классификация легированных сталей по структуре, маркировка и области их применения.
- •29) Конструкционные легированные стали и их термообработка (цементуемые, улучшаемые. Рессорно-пружинные стали).
- •30. Дефекты легированных сталей (дендритная ликвация, отпускная хрупкость, флокены).
- •31. Коррозионно-стойкие (нержавеющие) стали: хромистые (ферритный и мартенситный класс) и хромоникелевые (аустенитный класс). Маркировка, структура, свойства, области применения.
- •32) Термическая обработка коррозийно-стойких хромистых и хромоникелевых аустенитных сталей.
- •33) Межкристаллическая коррозия аустенитных и ферритных коррозионностойких сталей и способы ее устранения.
- •34)Износостойкие стали, их термическая обработка, области применения.
- •1)Графитизированная сталь.
- •2)Высокомарганцовистая сталь.
- •35) Шарикоподшипниковые стали. Маркировка, термическая обработка.
- •36) Инструментальные легированные стали перлитного класса. Маркировка, термическая обработка.
- •37) Быстрорежущие стали и их термическая обработка. Маркировка, области применения.
- •38) Твердые сплавы. Марки. Применение.
- •39) Теплостойкость инструментальных углеродистых и легированных сталей и твердых сплавов.
- •40) Наклеп. Влияние степени наклепа на структуру и механические свойства стали.
- •42) Способы упрочнения стальных изделий. Наклеп.
- •41) Рекристаллизация. Размер зерна при рекристаллизации. Критическая степень наклепа.
- •43) Поверхностная закалка (твч), режим термической обработки.
- •44) Цементация. Виды цементации. Термическая обработка цементированных изделий.
- •45) Азотирование. Стали для азотирования. Режим термической обработки.
- •46) Цианирование сталей.
- •47) Диффузионная металлизация (алитирование, хромирование, силицирование, борирование).
- •48) Алюминий и его сплавы. Деформируемые и литейные сплавы на основе алюминия (дюрали и силумины). Термическая обработка, структура, свойства, применение.
- •49)Титан и его сплавы. Конструкционные титановые сплавы, их термическая обработка, структура, свойства.
- •50) Подшипниковые сплавы (чугун, бронза, баббиты). Баббиты, маркировка, структура, применение.
- •51) Медь и ее сплавы. Латуни, бронзы. Структура, свойства, маркировка, применение.
27) Влияние легирующих элементов на критические точки железа и механические характеристики феррита.
Большинство элементов или повышают точку А4 и снижают точку А3, расширяя тем самым область существования γ - модификации, или понижают А4 и повышают А3, сужая область существования γ – модификации.
Растворение легирующих элементов в Feα происходит в результате замещения атомов железа атомами этих элементов. Атомы легирующих элементов, отличаясь от атомов железа размерами и строением, создают в решетке напряжения, которые вызывают изменение ее периода. Все элементы, растворяющие в феррите, изменяют параметры решетки феррита в тем большей степени, чем больше различаются атомные размеры железа и легирующего элемента. Элементы с атомным радиусом, меньшим, чем у железа уменьшают параметры решетки, а с большим – увеличивают (никель является исключением).
Хром, молибден, вольфрам упрочняют феррит меньше, чем никель, кремний и марганец. Молибден, вольфрам, а также марганец и кремний (при наличии более 1 %) снижают вязкость феррита. Хром уменьшает вязкость значительно слабее перечисленных элементов, а никель не снижает вязкости феррита.
Важное значение имеет влияние элементов на порог хладноломкости, что характеризует склонность стали к хрупкому разрушению. Наличие хрома в железе способствует некоторому повышению порога хладноломкости, тогда как никель интенсивно снижает порог хладноломкости, уменьшая тем самым склонность железа к хрупким разрушениям.
Таким образом, из перечисленных шести наиболее распространенных легирующих элементов особенно ценным является никель. Достаточно интенсивно упрочняя феррит, никель не снижает его вязкости и понижает порог хладноломкости, тогда как другие элементы, если и не снижают вязкости, то слабо упрочняют феррит (хром) либо, сильно упрочняя феррит, резко снижают его вязкость (марганец, кремний).
28) Классификация легированных сталей по структуре, маркировка и области их применения.
По структуре легированные стали делят на пять основных классов.
1. Перлитный класс. Это стали, которые после нагрева в аустенитную область и охлаждения на воздухе имеют структуру механической смеси феррита и цементита (перлит, сорбит, тростит). К перлитному классу относят низколегированные стали с суммарным содержанием легирующих элементов не более 3-5 например, ЗОХНЗА, 60Г, 9ХГС и др. Стали перлитного класса с различным содержанием углерода нашли широкое применение как конструкционные материалы для изготовления различных конструкций и деталей машин. Кроме деталей машин из легированных сталей перлитного класса с высоким содержанием углерода (более 0,8 %) изготавливают режущий и мерительный инструмент.
2. Мартенситный класс. Это стали, которые после нагрева в аустенитную область и охлаждения на воздухе приобретают структуру мартенсита. К мартенситному классу относят среднелегированные стали с суммарным содержанием легирующих элементов 7-14 %, например, 25Х2Н4ВА, 20X13, 30X13.40X13. Среди сталей мартенситного класса широкое применение находят стали, содержащие около 13 % хрома и до 0,4 % углерода. При содержании хрома более 12,5 % сталь становится коррозионностойкой. Стали этой группы хорошо сопротивляются атмосферной коррозии и коррозии в среде водяного пара, т.е. являются нержавеющими из них изготавливают различные детали машин, требующие повышенной прочности и коррозионной стойкости, а также некоторые виды инструмента.
3.Аустенитный класс. К этому классу относятся стали, легированные элементами, которые расширяют область существования γ - твёрдого раствора, в количествах, превышающих точку n(рис стр 60) (Ni/Мn > 8-10 %). например. 12Х18Н10Т. 110Г13Х2БРЛ). После охлаждения на воздухе стали этого класса имеют структуру аустенита. Набольшее применение среди сталей аустенитного класса находят хромоникелевые стали, содержащие около 18 % хрома и 8.., 10 % никеля (углерода не более 0,2 %). Эти стали имеют более высокую коррозионную стойкость, чем хромистые стали мартенситного класса. Аустенитные стали используются как кислотостойкие для изготовления химической аппаратуры, а также для деталей машин и криогенного оборудования, работающего при температурах до -253 С. Стали этого класса могут использоваться и как жаростойкие, жаропрочные материалы.
4. Ферритный класс. Это малоуглеродистые стали, легированные элементами, которые сужают область существования γ-твердого раствора, в количествах, превышающих точку т. Стали этого класса при нагреве не способны переходить в состояние аустенита и сохраняют строение феррита вплоть до температуры плавления. Техническое применение получили две разновидности сталей ферритного класса: высококремнистые, с содержанием Si 3,5-4,5 % (динамные и трансформаторные стали: 1311, 2011, 241 1, 3414) и высокохромистые с содержанием Сг 13-28 % (коррозионно-стойкие и жаростойкие, например, стали 12X17, 15Х25Т, 15X28, 08X13). Наиболее известными сталями ферритного класса являются высокохромистые стали, содержащие 17...30 % хрома и не более 0,2 % углерода. Они хорошо сопротивляются как электрохимической так и газовой коррозии при высоких температурах, т.е. являются кислотостойкими и жаростойкими (окалиностойкими). Недостатком этих сталей является низкая прочность и возникающая при перегреве (например, при сварке) крупнозернистость, которая не устраняется термической обработкой
5. Ледебуритный или карбидный класс. Это стали, в структуре которых присутствуют карбиды, выпадающие при первичной кристаллизации (непосредственно из жидкой фазы). К данному классу относят стали высоколегированные карбидообразующими элементами Сг, W, Mo, V, при содержании углерода свыше 0,6 % (например, быстрорежущая сталь марки Р6М5). Стали карбидного класса по назначению являются инструментальными. Они отличаются повышенной износостойкостью и теплостойкостью (красностойкостью). Благодаря этому их используют для изготовления режущего инструмента, работающего при высоких скоростях резания.