
- •1. Дувп. Решение. Общее решение. Общий интеграл. Промежуточный интеграл. Первый интеграл. Понижение порядка с помощью независимых первых интегралов.
- •2. Дувп. Задача Коши. Теорема Коши-Пикара. Теорема Пеано. Краевая задача.
- •3. Дувп. Неполные уравнения, интегрируемые в квадратурах.
- •4. Дувп. Неполные уравнения, допускающие понижение порядка.
- •5. Полные уравнения, допускающие понижения порядка.
- •6. Линейные дувп. Задача Коши. Т. Коши-Пикара. Однородные и неоднородные уравнения. Некоторые свойства решений лоду. Линейная независимость системы функций. Определитель Вронского.
- •7. Линейная независимость частных решений лоду n-го порядка. Формула Остроградского-Лиувилля.
- •8. Линейные ду n-го порядка. Фср. Теорема об общем решении лоду.
- •9. Задача о построении лоду по заданной фср.
- •10. Лоду n-го порядка с постоянными коэффициентами. Т. Коши-Пикара. Метод Эйлера построения фср. Случай простых корней характеристического уравнения.
- •11. Лоду n-го порядка с ПостК. Метод Эйлера построения фср. Случай кратных корней характеристического уравнения. Теорема об интегрируемости.
- •12. Лнду n-го порядка. Т. О структуре ор. Нек. Св-ва решений. Принцип суперпозиции.
- •13. Лнду n-го порядка. Метод Лагранжа вариации произвольных постоянных для отыскания чр. Т. Об интегрируемости.
- •14. Метод Коши отыскания чр лнду n-го порядка.
- •15. Лнду n-го порядка с ПостК и специальной правой частью (спч) вида .Метод неопределенных коэффициентов.
- •16. Лнду с ПостК и спч вида . Метод неопределенных коэффициентов.
- •17. Лнду с ПостК и спч вида . Метод неопределенных коэффициентов. Метод комплексных амплитуд.
- •18. Гармонический осциллятор под действием внешней гармонической силы. Явление резонанса.
- •19. Линейный осциллятор под действием внешней гармонической силы.
- •20. Лоду n-го порядка с ПеремК. Приведение к лду с ПостК с помощью замены аргумента.
- •21. Оду Эйлера.
- •22. Лоду n-го порядка с ПеремК. Приведение к лду с ПостК с помощью замены искомой функции.
- •23. Понижение порядка лоду n-го порядка с ПеремК при помощи известного частного решения.
- •24. Отыскание чр лоду n-го порядка с ПеремК в виде функции заданного вида и в виде степенного или обобщенного степенного ряда.
- •25 Лоду второго порядка с ПеремК.
- •26. Способы поиска чр лнду n-го порядка с ПеремК. Неоднородное ду Эйлера.
- •27. Системы обыкновенных ду. Каноническая и нормальная системы. Приведение ду n-го порядка, разрешенного относительно старшей производной, к нормальной сду n-го порядка.
- •28. Сду в нормальной форме. Решение. Общее решение. Частное решение. Задача Коши. Геометрический смысл задачи Коши.
- •29. Сду в нормальной форме. Т. Коши-Пикара. Т. Пеано. Метод Пикара как приближенный метод решения зк.
- •30. Общая теория нормальных cду и ду n-го порядка.
- •31. Лсду в нф. Т. Коши-Пикара. Однородные и неоднородные системы. Некоторые свойства решений однородной системы.
- •32. Лосду в нф. Линейная независимость n частных решений. Определитель Вронского. Формула Остроградского-Лиувилля.
- •33. Лосду в нф. Фср. Теорема об общем решении.
- •34. Задача о построении лосду, имеющей заданную фср.
- •35. Лосду с ПостК. Т. Коши-Пикара. Метод Эйлера построения фср. Случай действительных различных корней характеристического уравнения.
- •36 Лосду с ПостК. Метод Эйлера построения фср. Случай комплексных и кратных корней характеристического уравнения. Теорема об интегрируемости.
- •37. Лнсду. Т. О структуре общего решения. Некоторые свойства решений. Принцип суперпозиции.
- •38. Лнсду. Метод Лагранжа вариации произвольных постоянных для отыскания частного решения. Теорема об интегрируемости.
- •39. Лнсду с ПостК.
- •40. Динамическая интерпретация нормальной соду. Фазовое пространство. Фазовая траектория.
- •41. Автономные и неавтономные динамические системы. Свойства решений автономных динамических систем (адс). Фазовый портрет и бифуркации.
- •42. Виды траекторий адс. Сравнение геометрической интерпретации адс в фазовом и расширенном фазовом пространстве.
- •43. Устойчивость решений динамических систем. Теорема Ляпунова об устойчивости по первому приближению. Критерий Рауса-Гурвица.
- •44. Фазовая плоскость лосду 2 порядка с ПостК. Состояние равновесия типа узел.
- •45. Фазовая плоскость лосду 2 порядка с ПостК. Состояние равновесия типа седло.
- •46. Фазовая плоскость лосду 2 порядка с ПостК. Состояние равновесия типа фокус и центр.
- •47. Фазовая плоскость лосду 2 порядка с ПостК. Состояние равновесия типа вырожденный узел и дикритический узел.
- •48. Исследование устойчивости решений динамических систем с помощью функции Ляпунова.
- •49. Общие методы интегрирования сду. Метод сведения нормальной системы n ду к ду n-го порядка. Метод исключений.
- •50. Теория интегралов нормальных сду. Интеграл. Первый интеграл. НиД условие первого интеграла. Общий интеграл. Решение задачи Коши при наличии общего интеграла.
- •51. Независимость первых интегралов нормальной сду.
- •52. Теоремы о числе первых интегралов нормальной cду и числе независимых первых интегралов.
- •53. Понижение порядка сду с помощью независимых первых интегралов.
- •54. Сду в симметрической форме. Интегрируемые комбинации.
- •55. Лоду в чппп. Характеристическая система.
- •56. Лоду в чппп. Теорема об общем решении.
- •57. Лоду в чппп. Задача Коши.
- •58. Лнду в чппп. Общее решение.
- •59. Лнду в чппп. Задача Коши.
- •60. Лнду в чппп. Обобщённая задача Коши.
17. Лнду с ПостК и спч вида . Метод неопределенных коэффициентов. Метод комплексных амплитуд.
- ЛНДУ n-го порядка. (1)
В общем случае специальная правая часть выглядит как (2). Что-то из этого может отсутствовать.
Т.: общее решение уравнения (1) с СПЧ (2) всегда может быть получено в элементарных функциях: . следует искать в виде (3), где , - многочлены степени l с неопределенными коэффициентами, , если - корень кратности , и , если - не корень. После подстановки (3) в (1) и сокращения на , приравниваются коэффициенты при одинаковых степенях и , и отдельно. Коэффициенты всегда можно найти и притом единственным образом.
Пусть СПЧ имеет вид
,
.
,
.
а) - не корень
Используя принцип суперпозиции, будем
искать ЧР в виде
.
Можно показать, что если
,
то
.
Подставим в ЧР:
б) - корень кратности
Если один из многочленов есть тождественный ноль, то легче искать частное решение методом комплексных амплитуд.
Если
,
то перейдем к вспомогательному уравнению
,
,
где
- многочлен с неопределенными
коэффициентами.
.
Если
,
то проделаем все то же самое, только
18. Гармонический осциллятор под действием внешней гармонической силы. Явление резонанса.
.
,
найдем ЧР методом комплексных амплитуд.
а)
,
тогда
не корень,
и
,
,
.
Подставим в уравнение, получим:
.
Тогда
,
,
где первое слагаемое отвечает собственным
колебаниям, а второе – вынужденным.
Результирующее движение – суперпозиция
собственных колебаний системы с
собственной частотой
и вынужденных колебаний частоты
внешней силы.
б)
,
тогда
корень,
,
,
,
,
.
Подставим в уравнение, получим
.
Тогда
,
.
Амплитуда вынужденных колебаний становится переменной и неограниченно растет с течением времени. Это явление резонанса, имеющее место при совпадении собственной частоты системы и частоты внешней силы. В астрономии выражение, имеющее вид произведения периодической функции на степень независимой переменной называется вековым членом.
19. Линейный осциллятор под действием внешней гармонической силы.
20. Лоду n-го порядка с ПеремК. Приведение к лду с ПостК с помощью замены аргумента.
- ЛОДУ с переменными коэффициентами (1). Коэффициенты и правая часть определены и непрерывны на . Общее решение: . Рассмотри однородное уравнение: (2). В случае не существует общих способов построения ФСР.
Т.: линейность и однородность уравнения
(2) сохраняются при замене независимой
переменной
,
где
- любая n раз
дифференцируемая функция, причем
.
Т. (необходимое условие приводимости
(2) к ЛДУ с постоянными коэффициентами):
если (2) может быть приведено к ЛДУ с
постоянными коэффициентами при помощи
замены независимой переменной, то только
формулой вида:
.
Существует только один класс уравнений – уравнения Эйлера, приводимые к ЛДУ с постоянными коэффициентами такой заменой. В остальных случаях метод неприменим.
21. Оду Эйлера.
(1) – однородное уравнение Эйлера.
Т.: однородное уравнение Эйлера всегда
приводится к ЛДУ с постоянными
коэффициентами заменой
.
Доказательство:
,
необходимое условие выполнено, покажем,
что уравнение с постоянными коэффициентами:
,
,
,
,
,
.
Подставим в (1), получим
.
Т.к. сигнум входит в четной степени,
общее решение не зависит от знака
.
Поэтому достаточно найти решение при
,
сделав замену
,
а затем заменить:
,
.