
- •Московский авиационный институт (национальный исследовательский университет)
- •Раздел 1. Основные принципы организации и характеристики современных эвм
- •1.1 Поколения эвм, основные черты каждого из них
- •1.2 Общие положения об организации отдельных классов эвм
- •1.3. Основные характеристики, области применения эвм различных классов
- •I. По способу взаимодействия ядра и внешнего устройства.
- •II. По организации ядра.
- •1.4 Системы счисления, используемые в эвм
- •1.4.1 Представление чисел в позиционной системе счисления
- •1.4.2 Перевод чисел из двоичной (восьмеричной, шестнадцатеричной) системы счисления в десятичную систему счисления
- •1.4.3 Перевод чисел из десятичной системы счисления в двоичную (восьмеричную, шестнадцатеричную) систему счисления
- •1.4.4 Перевод чисел из шестнадцатеричной системы счисления в двоичную
- •1.4.5 Перевод чисел из двоичной системы счисления в шестнадцатеричную
- •1.5 Прямой, обратный, дополнительный коды
- •1.6 Переполнение разрядной сетки
- •1.7 Формы представления чисел в эвм
- •1.7.1 Форма представления чисел с фиксированной точкой
- •1.7.2 Форма представления чисел с плавающей точкой
- •Раздел 2. Организация памяти
- •2.1 Адресная память, ассоциативная память, стек
- •2.1.1 Адресная память
- •2.1.2 Стековая память
- •2.1.3 Ассоциативная память
- •2.2 Иерархическая организация многоуровневой памяти эвм
- •2.3 Страничная организация памяти
- •2.4. Буферная память типа "кэш" (бп), способы отображения оперативной памяти на бп
- •2.4.1 Секторный способ организации кэш
- •2.4.2 Группо-ассоциативный способ
- •2.4.3 Ассоциативный способ
- •Раздел 3. Выполнение команд в центральном процессоре (цп)
- •3.1 Основные узлы цп
- •3.2 Структура кода команд цп
- •3.3 Адресность команды
- •Микропрограмма выполнения четырёхадресной команды. Структура операционной части цп
- •1 Этап. Выбор машинной команды.
- •1 Этап. Выбор машинной команды.
- •3.4 Основные стадии выполнения команд
- •3.5 Конвейеризация
- •3.6 Способы адресации
- •Микропрограмма выполнения двухадресной команды формата регистр-регистр (r-r). Структура операционной части цп
- •1 Этап. Выбор машинной команды.
- •5.Базовая адресация
- •6.Индексная адресация
- •7.Базово-индексная адресация
- •Микропрограмма выполнения двухадресной команды. Структура операционной части цп.
- •1 Этап. Выбор машинной команды.
- •8.Косвенно-регистровая адресация
- •1 Этап. Выбор машинной команды.
- •Раздел 4. Арифметико-логическое устройство (алу)
- •4.1 Организация алу
- •4.2 Выполнение операций в алу для чисел с фиксированной точкой
- •4.2.1 Алу для выполнения операций сложения и вычитания над числами с фиксированной точкой
- •Микропрограмма выполнения операции сложения/вычитания
- •4.2.2 Алу для выполнения операции умножения над числами с фиксированной точкой представленных в прямом коде
- •Структурная схема алу для выполнения операции умножения над числами с фиксированной точкой, представленных в прямом коде (по 2 методу)
- •3 Этап.
- •Блок-схема алгоритма микропрограммы
- •4.2.3 Деление чисел с фиксированной точкой
- •1 Этап.
- •2 Этап.
- •3 Этап.
- •Деление с восстановлением остатка
- •Деление без восстановления остатка
- •Структурная схема алу (Деление без восстановления остатка)
- •4.3 Особенности выполнения операций над числами с плавающей точкой
- •4.3.1 Сложение/вычитание чисел с плавающей точкой
- •5.2 Микропрограммная реализация буу
- •5.2.1 Классификация микропрограммных устройств управления
- •По способу организации управляющей части
- •2) Однофазные и многофазные уу
- •3) Статические и динамические уу
- •5.2.2 Выполнение перехода на микропрограммном уровне
- •5.2.3 Обобщённая структурная схема микропрограммного устройства управления
- •5.3 Уу с жёсткой логикой. Аппаратная (схемная) реализация уу.
- •Реализация уу с жёсткой логикой для примера горизонтального аппаратного уу, схема Уилкса
- •5.4 Сравнение микропрограммной и аппаратной реализации уу
- •Раздел 6. Организации прерываний в эвм
- •6.1 Общие принципы организации прерываний в эвм
- •6.2 Классы и иерархия обработки прерываний
- •6.3 Механизм реализации прерываний с помощью «старых» и «новых» ячеек
- •6.4 Стековый механизм организации прерываний
- •6.4.1 Механизм реализации внешних прерываний
- •6.4.2 Классификация внешних прерываний
- •Раздел 7. Организация ввода-вывода в эвм
- •7.1 Проблематика ввода-вывода, взаимодействие ядра эвм с периферийными устройствами Канальный ввод/вывод
- •Канальная команда
- •7.2 Ввод-вывод при использовании процессоров ввода-вывода Функционирование селекторного канала
- •7.3 Режимы работы процессоров ввода-вывода
- •Организация мультиплексного канала
- •7.4 Магистральная организация ввода-вывода
- •Программно-управляемый ввод/вывод (для медленных ву)
- •7.5 Радиальная организация ввода-вывода
- •Раздел 8. Микропроцессоры
- •8.1 Классификация микропроцессоров, секционированные микропроцессоры, однокристальные микропроцессоры Классификация микропроцессоров
- •Микропроцессоры серии intel
- •Микропроцессор 8088
- •8.2 Взаимосвязь характеристик микропроцессоров и интерфейсов периферийных устройств
- •8.3 Периферийные устройства пэвм, дисплеи: текстовый и графический режимы
- •Раздел 9. Организация функционирования вычислительных систем (вс)
- •9.1 Классификация вс, системы окод, окмд, мкод, мкмд, параллельные системы
- •9.2 Понятие о многомашинных и многопроцессорных вычислительных системах мкмд
- •9.2.1 Многомашинные комплексы
- •9.2.2 Мультипроцессорные вычислительные системы
- •9.3 Отказоустойчивые и вычислительные кластеры
- •9.4 Векторные вс
- •9.4.1 Окмд
- •9.4.2 Мкод. Конвейерные векторные вс
- •9.4.3 Выполнение операций сложения и вычитания с плавающей точкой над векторами
- •Приложение 1 Логические функции
- •Приложение 2 Основные узлы эвм Триггеры
- •Регистры
- •Приём и передача информации из регистра в регистр.
- •Запись информации с одного регистра на другой.
- •Сдвиг информации в регистре.
- •Дешифратор
- •Сумматор
- •Счётчики
- •Оглавление
- •Раздел 1. Основные принципы организации и характеристики современных эвм 2
- •Раздел 2. Организация памяти 16
- •Раздел 3. Выполнение команд в центральном процессоре (цп) 22
- •Раздел 4. Арифметико-логическое устройство (алу) 36
- •Раздел 5. Устройство управления эвм 49
Организация мультиплексного канала
ША – шифратор адреса
РА – регистр адреса
Р№ВУ - регистр номера внешнего устройства
Мультиплексный канал предназначен для параллельной обработки одновременно работающих ВУ во времени.
Структура мультиплексного канала включает в себя 2 части:
Одна часть предназначена для хранения параметров канальной программы относительно отдельных ВУ (относятся к отдельному внешнему устройству и представляют собой память подканалов).
Вторая часть является общей для всех ВУ и представляет собой регистры канала.
При работе мультиплексного канала выделяют 2 типа сеансов связи:
Сеанс начальной выборки
Сеанс по запросу внешнего устройства
Сеанс начальной выборки:
Предназначен для создания нового подканала. ЦП выдает в канал и номер устройства и номер канала, с которым необходимо произвести операцию. Далее происходит тестирование ВУ, и если оно свободно и готово к выполнению операции, то далее на РАКК из специальной ячейки помещается адрес первой канальной команды, на РКК выбирается первое управляющее слово, в СБ заносятся младшие разряды адреса. Если КОП – запись, то на РДК из памяти считываются первые 4 байта массива. Далее по номеру ВУ определяется адрес подканала и в этот подканал заносится содержимое РАКК, РКК, СБ. После того как ВУ будет готово к приему или выдаче информации, оно передает свой номер в мультиплексный канал. И далее будет иметь место второй тип сеанса связи по обслуживанию ВУ.
Т. к. мультиплексный канал предназначен для обслуживания медленных ВУ, то каждому из них выделяют отдельный сеанс связи, в течение которого ВУ обменивается с каналом одним байтом информации. Сеансы связи по обслуживанию различных ВУ чередуются между собой во времени.
Сеанс связи по запросу ВУ:
Рассмотрение этого сеанса включает 3 этапа:
По адресу, полученному на регистре РА (адрес памяти подканала) выбирается содержимое памяти подканала и подается на регистры канала.
Основной этап начинается с анализа кода операции на регистре РКК и пересылки 1 байта информации между РДК и РВУ.
Третий этап заключается в том, что содержимое регистров канала переписывается в подканал, адрес которого содержится на регистре РА.
ВУ на регистр номера ВУ выставляет свой номер (когда данное ВУ готово к работе, к обмену одним байтом РДК с РВУ).
Шифратор адреса по номеру ВУ определяет адрес ячейки ОП, начиная с которой хранится содержимое памяти подканала (содержимое РАКК, РКК, СБ и РДК). Далее содержимое памяти подканала заносится на регистры канала.
Выполнение операции «запись»:
По СБ 1 байт переписывается с РДК на РВУ и по формуле (1) корректируются параметры канала. Если СБ и Дл массива не равны нулю, то переходим к этапу 3.
На втором этапе, после того как очередной байт переписался на РВУ, СБ может оказаться равным нулю, а Дл массива не равной нулю. Тогда на этом же этапе по адресу, содержащемуся в РКК, выбирается очередной фрагмент массива и передается на РДК. Далее 3 этап.
На втором этапе после передачи очередного байта, Дл массива может оказаться равной нулю. Тогда анализируем поле признаков. Если признак цепочки команд равен нулю, то формируется сигнал прерывания, канальная программа завершена. В противном случае из ОП выбирается следующее управляющее слово по адресу, который содержится на РАКК. Это управляющее слово записывается на РКК за два обращения к ОП.
После выбора очередного управляющего слова на РКК в этом же сеансе связи проверяется КОП. Если происходит операция записи, то на РДК считывается фрагмент массива по адресу, хранящемуся на РКК. Далее третий этап.
Выполнение операции «чтение»:
По СБ с РВУ на РДК считывается очередной байт информации. По формуле (1) корректируются параметры канала.
Если СБ и Дл массива не равны нулю, то переходим к третьему этапу.
Если СБ = 0, а Дл массива ≠ 0, то это означает, что СБ заполнен полностью и по адресу с РКК производиться запись в память с РДК. Далее третий этап.
Если Дл массива =0, то РДК записывается в память и анализируется поле признаков (см. выполнение операции «запись»).
В мультиплексном канале существует 3 различных регистра для хранения адреса.
РА – хранит адрес памяти подканала.
РАКК – хранит адрес следующего управляющего слова.
Адр в РКК – хранит адрес массива, который считывается или записывается в ОП.