
- •Содержание
- •Билет №1
- •2. Определение катаболизма. Катаболизм и анаболизм. Стадии катаболизма биомолекул в организме.
- •Билет№2.
- •1.Ферменты. Специфичность ферментов. Активный центр фермента.
- •2.Экзергонические и эндергонические биохимические реакции. Роль атф и других макроэргических фосфатов в сопряжении экзергонических процессов и эндергонических процессов.
- •3.Пути внутриклеточного метаболизма глюкозы. Гликолиз и глюконеогенез. Обратимые и необратимые реакции.
- •Билет №3
- •1.Регуляция активности ферментов. Проферменты. Изоферменты. Ингибиторы ферментов.
- •2.Реакции биологичемкого окисления.Типы реакций( дегидрогеназные, оксидазные, оксигеназные. Их биологическое значение.
- •3 Цитохромы Катализируют окисление веществ путем отдачи электронов Гемовое железо в одном из цитохромов имеется так же атом меди.
- •Билет№4
- •1.Ферментативный катализ
- •2.Митохондриальный транспорт
- •3.Аэробное окисление пирувата (окислительное декарбоксилирование пировиноградной кты).
- •Билет№5
- •1.Кинетика ферментативного катализа. Уравнение Михаэлиса-Ментен. Уравнение Лайнуивера-Берка.
- •2.Окислительное фосфорилирование. Пункты сопряжения окисления и фосфорилирования. Атф-синтетаза митохондрий.
- •3 Субъединицы (γ,δ,ε) способствуют целостности атф-синтазы
- •3.Полное окисление глюкозы. Энергетический баланс
- •Билет№6
- •1.Аллостерические ферменты. Ингибиторы и активаторы аллостерических ферментов. Аллостерические центры.
- •Деградация жирных кислот: β-окисление
- •Билет№7
- •1.Опять ферменты
- •2. Ингибиторы и разъединители транспорта электронов окислительного фосфорилирования
- •3.Глюконеогенез
- •Билет №8
- •1. Витамины
- •2. Микросомальная цепь транспорта электронов
- •3. Глюкозолактонный цикл
- •1. Витамин в2
- •3.Гипергликемия
- •Билет 10
- •Билет 11
- •1. Витамин в6(пиридоксин, пиридоксаль, пиридоксамин)
- •3 Существуют три источника аминокислот в клетке – поступление из крови, распад собственных внутриклеточных белков и синтез заменимых аминокислот.
- •Билет 12
- •1.Биотин
- •2. Нарушение обмена гликогена
- •3. Существуют три источника аминокислот в клетке – поступление из крови, распад собственных внутриклеточных белков и синтез заменимых аминокислот.
- •Билет 13. Фолиевая кислота. Биологическая роль. Пути поступления в организм. Коферментная функция.
- •2.Катаболизм триацилглицеролов. Реакции, механизм регуляции активности триглицеридлипазы. Нейрогуморальная регуляция липолиза (адреналин, глюкагон, инсулин).
- •3.Трансаминирование амк. Аминотрансферазы. Отдельные аминотрансферазы. Реакции. Биохимическое значение трансаминирования амк.
- •Билет 14
- •1.Витамин в12. Биологическая роль. Пути попадания в организм. Коферментная функция.
- •3.Пути превращения аммиака в организме человека. Механизмы обезвреживания аммиака.
- •Билет №15
- •1.Витамин с.
- •2.Окисление пальмитиновой кослоты.
- •3.Биосинтез мочевины.
- •Билет №16
- •1.Витамин а.
- •2.Окисление ненасыщенных жирных кислот.
- •3.Превращение безазотистого скелета ак
- •Билет №17
- •1.Витамин д
- •2. Биосинтез высших жирных кислот.
- •3. Метаболизм ак с разветвленной цепью.
- •Билет №25 Репликация днк
- •Свойства процесса репликации:
- •Желчные кислоты
- •Стероидные гормоны
- •2.Специализированные пути метаболизма цикл. А,к- фенилаланина и тирозина.. Заболевания, связанные с нарушением обмена фенилаланина и тирозина.
- •3.Биосинтез гема
- •Билет 19
- •2.Биосинтез пуриновых нуклеотидов
- •3.Основные закономерности генетического кода. Адапторная гипотеза ф. Крика и её развитие в wobble-гипотезе.
- •Билет №20
- •2. Кинетика ферменативного катализа. График зависимости скорости ферментативной реакции от концентрации субстрата при постоянной концентрации фермента.
- •Билет №21
- •Транскрипционные факторы: Механизмы действия тф , связавающиеся с днк, могут влиять на транскрипцию генов через несколько механизмов:
- •Билет№22
- •Билет 23
- •2. Полное окисление глюкозы. Энергетический баланс полного окисления глюкозы.
- •Билет№24
- •1.Антибиотические вещества, подавляющие синтез белка
- •24.2 Функционирование малат-аспартатного и глицерофосфатного шунта.
- •Билет №26
- •3. Окисление капроновой кислоты
- •Билет №27
- •Репликация
- •Билет 28
- •Билет29
- •29.2.Метаболизм аминокислот
- •Билет №30
- •1.Особенности молекулярной организации и экспрессии генома эукариот (экзоны, интроны, сплайсинг)
- •2.Образование кетоновых тел и их утилизация.
- •3.Цикл трикарбоновых кислот. Реакции
Билет 13. Фолиевая кислота. Биологическая роль. Пути поступления в организм. Коферментная функция.
Фолиевая кислота — водорастворимый витамин B9 необходимый для роста и развития кровеносной и иммунной систем.
Наряду с фолиевой кислотой к витаминам относятся и её производные, в том числе ди-, три-, полиглутаматы и другие. Все такие производные вместе с фолиевой кислотой объединяются под названием фолацин. Недостаток фолиевой кислоты может вызвать мегалобластную анемию у взрослых, а при беременности повышает риск развития дефектов нервной трубки. Фолиевая кислота необходима для создания и поддержания в здоровом состоянии новых клеток, поэтому её наличие особенно важно в периоды быстрого развития организма — на стадии раннего внутриутробного развития и в раннем детстве. Процесс репликации ДНК требует участия фолиевой кислоты, и нарушение этого процесса увеличивает опасность развития раковых опухолей. В первую очередь от нехватки фолиевой кислоты страдает костный мозг, в котором происходит активное деление клеток. Клетки-предшественники эритроцитов, образующиеся в костном мозге, при дефиците фолиевой кислоты увеличиваются в размере, образуя так называемые мегалобласты и приводя к мегалобластной анемии. Основная функция фолиевой кислоты и её производных — перенос одноуглеродных групп, например метильных и формильных, от одних органических соединений к другим. Главная активная форма фолиевой кислоты — тетрагидрофолиевая кислота, образуемая с помощью фермента дигидрофолат редуктазы. Фолиевая кислота метаболически неактивна, но является предшественником коферментов, включающихся в обменные процессы. Важной химической особенностью фолиевой кислоты является способность ее птеридинового кольца к восстановлению путем присоединения 4 водородных атомов в 5, 6, 7 и 8 положениях с образованием тетрагидрофолиевой кислоты (ТГФК).
Наличие в молекуле ТГФК 4 подвижных атомов водорода обусловливает ее участие в некоторых окислительно-восстановительных реакциях в качестве донора электронов. Однако биологическая роль ТГФК определяется в основном наличием в положениях 5 и 10 молекулы активных в химическом отношении атомов азота, способных присоединять одноуглеродные радикалы. Это свойство лежит в основе коферментных функций ТГФК.
Восстановление фолиевой кислоты подробно изучено вначале в химических, а затем в ферментных системах. Превращение фолиевой кислоты в ее тетрагидроформу происходит через промежуточный продукт, дигидрофолиевую кислоту. Источником электронов в этих реакциях могут быть НАДФ-Н или НАД-Н. Восстановление происходит преимущественно в печени согласно следующим уравнениям:
ФК + НАДФ-Н + Н+ ---------- ДГФК + НАДФ
ДГФК + НАДФ-Н + Н+ ------- ТГФК + НАДФ
Тетрагидрофолат — соединение неустойчивое и в присутствии молекулярного кислорода быстро превращается в дигидрофолат. Он окисляется также и ферментативным путем при участии НАДФ. Тетра-гидрофолиевая кислота является биологически активной формой фолатов. Точно установлено, что ее коферментные функции непосредственно связаны с переносом одноуглеродных групп. Первичными источниками одноуглеродного фрагмента в организме могут служить бета-углеродный атом серина, альфа-углеродный атом глицина, 2-й углеродный атом имидазольного кольца гистидина, 2-й углеродный атом индольного кольца триптофана, углерод метальных групп холина, метионина, диметилглицина, а также образующиеся в организме в процессе обмена формальдегид, муравьиная кислота и метанол. Фолиевая кислота и другие витамины. Наиболее тесная функциональная взаимосвязь существует между фолиевой кислотой и витамином B12. Выше были подробно рассмотрены вопросы взаимодействия фолатов и витамина B12 в таких важных реакциях организма, как синтез пуриновых и пиримидиновых оснований, метионина, в обмене гистидина и т. д. Существует предположение, что витамин B12 участвует также в переносе фолатов в клетку и выведении их из нее. Это предположение подтверждается наблюдениями, свидетельствующими о резком падении содержания фолатов в печени у овец при острой недостаточности витамина В12 и кобальта, а также относительно высокой активностью фолатов в сыворотке и низким содержанием их в эритроцитах у больных с недостаточностью витамина B12.
Состояние обмена фолатов зависит также от обеспеченности организма витамином С. Мегалобластическая анемия, часто наблюдаемая при цинге, по-видимому, является результатом нарушения обмена фолатов, обусловленным недостаточностью витамина С. Высказано предположение, что аскорбиновая кислота предохраняет фолатредуктазу от разрушения. На это указывает, в частности, тот факт, что при введении витамина С увеличивается выделение с мочой восстановленных форм фолатов. Косвенным доказательством взаимодействия этих витаминов служат также данные о том, что отмечаемые у животных с цингой нарушения окисления тирозина, фенилаланина и падение активности оксидазы п-оксифенилпировиноградной кислоты устраняются в равной степени аскорбиновой и фолиевой кислотами.
Весьма интересны факты об участии в обмене фолатов биотина. Было установлено, что недостаточность биотина приводит к значительному уменьшению общего содержания фолатов в печени и к изменению в соотношении восстановленных форм фолатов. Эти данные показывают, что недостаток биотина ухудшает использование фолатов, нарушая превращение их в активные формы.