
- •1.Общие вопросы метрологии
- •2.Методы и средства измерения
- •2.1. Методы измерения
- •2.2 Средства измерения
- •2.3. Общие принципы построения цифровых средств измерения
- •2.4.Метрологические характеристики
- •3. Теория погрешностей
- •3.1.Классификация погрешностей и их количественная оценка
- •3.2. Обработка результатов многократных измерений
- •3.3. Оценка погрешностей технических измерений
- •4.Теория неопределенности измерений
- •4.1 Общие положения теории неопределенности измерения
- •4.2. Методы расчета неопределенности измерений
- •4.3 Сравнение теории неопределенности измерений и теории погрешностей
- •5. Динамические характеристики средств измерения
- •6.1Протокол передачи данных
- •6.2.Hart протокол
- •Протоколы rs232/rs485
- •7.1 Общие сведения об измерении температуры
- •7.2Температурные шкалы (мтш-90)
- •7.3Средства измерения температуры
- •7.4 Термометры расширения
- •7.5 Манометрические термометры Манометрические термометры
- •7.7Термопреобразователи сопротивления. Принцип действия. Конструкция
- •Термометры сопротивления
- •7.8 Вторичные приборы термопреобразователей сопротивления
- •7.9 Нормирующие преобразователи термопреобразователей сопротивления
- •7.10 Термоэлектрические преобразователи. Принцип действия. Конструкция
- •7.11 Удлиняющие термоэлектродные провода.
- •7.12 Методы измерения термо эдс
- •7.13 Нормирующие преобразователи термоэлектрических преобразователей
- •7.14 Методика измерения температуры контактными средствами измерения
- •7.15 Основы теории бесконтактного измерения температуры
- •7.16 Оптические пирометры
- •7.17 Цветовые пирометры
- •7.18 Радиационные пирометры
- •8.1.Общие сведения об измерении давления
- •8.2.Методы и средства измерения давления
- •8.3.Жидкостные манометры
- •8.4.Деформационные манометры и дифманометры
- •8.5.Тягонапоромеры
- •8.6.Электрические средства измерения давления
- •8.7.Тензорезистивные преобразователи давления
- •45. Упрощенная электрическая схема преобразователей "Сапфир-22".
- •8 .8.Пьезорезистивные преобразователи давления
- •8.9.Емкостные преобразователи давления
- •8.10.Резонансные преобразователи давления
- •8.11.Индукционные преобразователи давления
- •8.12.Грузопоршневые манометры
- •8.13.Методика выбора средств измерения давления и разности давлений
- •8.14.Методы проведения измерений давления и разности давления
- •9.1.Общие сведения об измерении уровня
- •9.2.Визуальные уровнемеры
- •9.3.Гидростатические уровнемеры и методика их применения
- •9.4.Поплавковые уровнемеры
- •9.5.Поплавковые уровнемеры с магнитным преобразователем
- •9.6.Буйковые уровнемеры
- •9.7.Емкостные уровнемеры
- •9.8.Радиоволновые уровнемеры
- •9.9. Ультразвуковые (сонарные) уровнемеры
7.5 Манометрические термометры Манометрические термометры
В зависимости от заполняющего вещества манометрические термометры делятся на газовые, парожидкостные и жидкостные.
Термобаллон манометрического термометра помещают в измеряемую среду. При нагреве термобаллона внутри замкнутого объема увеличивается давление, которое измеряется манометром. Шкала манометра градуируется в единицах температуры. Капилляр (обычно латунная трубка внутренним диаметром, составляющим доли миллиметра) позволяет удалить манометр от места установки термобаллона. Капилляр по всей длине защищен оболочкой из стальной ленты. Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами.
Наиболее уязвимыми в конструкции манометрических термометров являются места присоединения капилляра к термобаллону и манометру. Поэтому монтировать и обслуживать такие приборы следует осторожно.
Принцип действия основан изменении давления газа, жидкости или насыщенного пара в замкнутом объеме в зависимости от температуры. K= 1 ; 1.5
Достоинства: передача показаний на расстояния; взрывобезопасность;
Недостатки: громоздкость; ремонтонепригодность.
1. газовые ТМГ (-200600ºC), среда – гелий, азот, аргон.
(+) не влияет атмосферное давление, т.к. оно много меньше внутреннего.
термобалон
капиляр
манометр
2. жидкостные (-50300ºC), кремнийорганическая жидкость ПМС.
Погрешности: изменение температуры окружающей среды; гидростатическая погрешность (разный уровень расположения термобалона и измерительного прибора).
(-) влияет tокр из-за сжимаемости, но жидкость внутри практически не сжимаема.
3. парожидкостные или конденсационные (-25300ºC)
основаны на зависимости давления насыщения от температуры → нелинейная шкала, среда – хлористый этил или метил, спирт, ацетон.
Не влияет tокр, только pокр. Есть гидростатическая погрешность (разный уровень расположения термобалона и измерительного прибора).При малом давлении в термосистеме может быть барометрическая погрешность.
7.6 Дилатометрические термометры
Дилатометрический термометр. Простейший принцип измерения температуры – это использовать удлинение металлического стержня, рассчитываемое по уравнению
г
де
длина
стержня (м) в первоначальном состоянии,
при О 0С
и при температуре
(0С); -
коэффициент линейного температурного
расширения материала стержня, м/(м·К).
Этот коэффициент в той или иной степени
(в зависимости от материала) зависит от
температуры, т.е. непостоянен: = f().
Обычно в качестве чувствительного
элемента дилатометрического термометра
используют трубку из металла с возможно
более высоким (например,
из латуни), внутри которой концентрично
располагается стержень из материала
с возможно более низким ,
например, из инвара, фарфора, кварца. На
рис. 14.2 представлена схема дилатометрического
термометра с
чувствительным элементом в виде отрезков
проволоки.
Диапазон измерений составляет примерно 0 - 1000 0С. Большая длина чувствительных элементов таких термометров не позволяет определять с их помощью температуру в отдельных точках; они показывают температуру, усредненную по всей длине.
Дилатометрические термометры часто используют там, где требуются большие усилия в исполнительном механизме, например в регуляторах температуры прямого действий, поскольку для компенсации температурного расширения стержня его упругим сжатием согласно закону Гука требуется весьма большое усилие.