Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат Стасик.docx
Скачиваний:
2
Добавлен:
17.09.2019
Размер:
237.61 Кб
Скачать
  1. Примеры практического применения приборов.

Фотоэлектронные умножители частности ими регистрируют сверхслабую биолюминесценцию, что важно при некоторых биофизических исследованиях.

На внешнем фотоэффекте основана работа электронно-оптического преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений. Схема простейшего ЭОП приведена на рис. 4. Световое изображение объекта 1, проецированное на полупрозрачный фотокатод К, преобразуется электронное изображение 2. Ускоренные и сфокусированные электрическим полем электродов Э электроны попадают на люминесцентный экран Е. Здесь электронное изображение благодаря катодолюминесценции вновь преобразуется в световое.

В медицине ЭОП применяют для усиления яркости рентгеновского изображения, это позволяет значительно уменьшить дозу облучения человека.

Если сигнал с ЭОП подать в виде развертки на телевизионную систему, то на экране телевизора можно получить «тепловое» изображение предметов. Части тела, имеющие разные температуры, различаются на экране либо цветом при цветном изображении, либо светом, если изображение черно-белое. Такая техническая система, называемая тепловизором, используется в термографии.

На основе высокоэффективных вентильных фотоэлементов с к.п.д., равным 15% для солнечного излучения, создают специальные солнечные батареи для питания бортовой аппаратуры спутников и космических кораблей.

  1. Тезисы реферата.

Фотоэффект — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Явление фотоэлектрического эффекта было подробно изучено в 1888—1890 гг. А. Г. Столетовым. Схема установки для измерения фотоэффекта изображена на рис. 1. Если поместить установку в вакуум и подать на пластинку М отрицательный потенциал, то тока в цепи наблюдаться не будет, поскольку в пространстве между пластинкой и сеткой нет заряженных частиц, способных переносить электрический ток. Но при освещении пластинки источником света гальванометр обнаруживает возникновение тока (называемого фото током), носителями которого служат электроны, вырываемые светом из металла.

Рис. 1 Схема установки для наблюдения фотоэлект­рического эффекта:

М — пластинка испытуемого металла; С — металлическая сетка; Б —источник постоян­ного электрического напряже­ния; Г— гальванометр.

Явление фотоэффекта основано на преобразовании световой энергии (энергии электромагнитного излучения) в электрическую. Различают три вида фотоэффекта:

1) внешний – вырывание электронов из поверхности тел под действием света;

2) внутренний – изменение электропроводимости полупроводников и диэлектриков под действием света;

3) запирающегося слоя - возбуждение электродвижущей силы на границе между проводником и светочувствительным полупроводником.

Основными законами фотоэффекта можно считать следующие :

1) пропорциональность фототока интенсивности светового потока J, вызывающего фотоэффект ( J ) при условии неизменности спектрального состава излучения (Закон Столетова);

2) наличие длинноволновой (красной) границы области спектра излучения вырывающего фотоэлектроны из данного фотокатода ; лишь излучения с длиной волны т.е. с частотой C/ могут вырывать фотоэлектроны;

3) независимость кинетической энергии фотоэлектронов от интенсивности света и линейная зависимость максимальной кинетической энергии фотоэлектронов ( ), вырванного из данного фотокатода светом некоторой частоты , от этой частоты :

4) безынерционность фотоэффекта: установлено, что фототок появляется и исчезает вместе с освещением, запаздывая не более чем

на

Простые фотоэлементы с внешним фотоэффектом применяются сейчас сравнительно редко. На смену им пришли более сложные фотоэлектрические приемники — фотоумножители (ФЭУ). В этих приборах используется явление вторичной электронной эмиссии: электрон, обладающий достаточной энергией и разогнанный электрическим полем, попав на поверхность с малой работой выхода, может выбить несколько электронов. Таким образом, с помощью вторичной электронной эмиссии можно получить усиление фототока.

Фотометрические приборы, в которых в качестве приемника света используется фотоэлемент или фотоумножитель, называются электрофотометрами. 

В последнее время в астрономических наблюдениях все шире применяются преобразователи изображения — электоонно-оптические преобразователи (ЭОП) и телевизионные системы.Электронно-оптический преобразователь (рис. 116) состоит из фотокатода Ф, электронной линзы Л и экрана Э, люминесцирующего  под  действием электронов.

   Фотоэлектрические приборы обычно классифицируют по виду рабочей среды, типу фотоэлектрического эффекта, функциональному назначению и др. По виду рабочей среды фотоэлектрические приборы подразделяют на электровакуумные и полупроводниковые. В зависимости от типа фотоэффекта, лежащего в основе действия прибора, различают фотоэлектрические приборы с внешним фотоэффектом (электровакуумные фотоэлементы, фотоэлектронные умножители), фотоэлектрические приборы, действие которых основано на внутреннем фотоэффекте (фоторезисторы, фотодиоды, фототранзисторы, полупроводниковые фотоэлементы). В зависимости от функционального назначения фотоэлектрические приборы подразделяются на фотоприёмники, фотодатчики и фотоэлектрические преобразователи энергии оптического излучения в электрическую. Фотоприёмники преобразуют световой сигнал в электрический и применяются, например, в аппаратуре факсимильной связи, устройствах считывания информации в вычислительной технике, киноаппаратуре. К особой группе фотоприёмников относят телевизионные передающие трубки. Фотодатчики предназначены для преобразования измеряемой величины (деформации, давления и т. д.) в электрический сигнал.  

Фотоэлектрические приборы широко применяются в медицине (для усиления яркости рентгеновского изображения, это позволяет значительно уменьшить дозу облучения человека), науке (на основе высокоэффективных вентильных фотоэлементов с к.п.д., равным 15% для солнечного излучения, создают специальные солнечные батареи для питания бортовой аппаратуры спутников и космических кораблей).