
- •Міністерство освіти і науки україни донецький національний технічний університет
- •Integral calculus (інтеґральне числення)
- •Донецьк 2005
- •Integral calculus lecture no. 19. Primitive and indefinite integral
- •Point 1. Primitive
- •Properties of primitives
- •Point 2. Indefinite integral and its properties
- •Point 3. Integration by substitution (change of variable)
- •Point 4. Integration by parts
- •Lecture no.20. Classes of integrable functions
- •Point 1. Rational functions (rational fractions)
- •Point 2. Trigonometric functions
- •Universal trigonometrical substitution
- •Other substitutions
- •Point 3. Irrational functions
- •Quadratic irrationalities. Trigonometric substitutions
- •Quadratic irrationalities (general case)
- •Indefinite integral: Basic Terminology
- •Lecture no. 21. Definite integral
- •Point 1. Problems leading to the concept ofa definite integral
- •Point 2. Definite integral
- •Point 3. Properties of a definite integral
- •I ntegration of inequalities
- •Point 4. Definite integral as a function of its upper variable limit
- •Point 5. Newton-leibniz formula
- •Point 6. Main methods of evaluation a definite integral Change of a variable (substitution method)
- •Integration by parts
- •Lecture no.22. Applications of definite integral
- •Point 1. Problem – solving schemes. Areas
- •Additional remarks about the areas of plane figures
- •Point 3. Volumes
- •Volume of a body with known areas of its parallel cross-sections
- •Volume of a body of rotation
- •Point 4. Economic applications
- •Lecture no. 23. Definite integral: additional questions
- •Point 1. Approximate integration
- •Rectangular Formulas
- •Trapezium Formula
- •Simpson’s formula (parabolic formula)
- •Point 2. Improper integrals
- •Improper integrals of the first kind
- •Improper integrals of the second kind
- •Convergence tests
- •Point 3. Euler г- function
- •Definite integral: Basic Terminology
- •Lecture no. 24. Double integral
- •Point 1. Double integral
- •Point 2. Evaluation of a double integral in cartesian coordinates
- •Point 3. Improper double integrals. Poisson formula
- •Point 4. Double integral in polar coordinates
- •Double integral: Basic Terminology
- •Contents
- •Integral calculus 3
- •Integral calculus (Інтеґральне числення): Методичний посібник по вивченню розділу курсу ”Математичний аналіз” для студентів ДонНту (англійською мовою)
Point 2. Trigonometric functions
In this point we study methods of integration of a rational function
( 2
)
or
two arguments
,
.
Universal trigonometrical substitution
Theorem 3. Integration of a function (2) always reduces to that of a rational function of one variable t with the help of so-called universal trigonometrical substitution (UTS)
(
3 )
■On the base of (3) we have
,
,
.
Therefore,
,
( 4 )
and
,
where a function of the argument x
is a rational one■
Ex. 6.
Ex. 7. Direct evaluation
of the integral
with the help of UTS of
the form
leads
to complicated integral (verify!). We’ll reduce it to the integral
of preceding example by changing a variable, namely
.
Ex. 8.
Other substitutions
I. If a function (2) is odd with respect to ,
( 5 )
then it can be transformed to the next form:
,
where
is a rational function of one variable
.
Substitution
(
6 )
reduces integration of the given function to that of a rational function of t.
II. If a function (2) is odd with respect to ,
,
( 7 )
one can bring it to the form
(
is a rational function of
)
and apply the substitution
(
8 )
III. If a function (2) is even with respect both to and
( 9 )
it’s
transformable into a rational function
of
,
,
and can be integrated with the help of one of substitutions
( 10
)
Note 1. Substitutions of this point can be applicable to some irrational functions of and .
Ex. 9. Calculate the indefinite integral
.
The
integrand
is odd function with respect to
,
because of
,
and so
.
Ex. 10. Evaluate the indefinite integral
.
Ex. 11.
.
Ex. 12. Find the
indefinite integral
.
Ex. 13. Calculate the
indefinite integral
.
The integrand
is even function with respect both to
and
.
So
Some other methods
a) Application of power reduction formulas
,
( 11 )
Ex. 14.
.
Ex. 15.
.
Ex. 16.
.
b) Application of product formulas
1)
;
2)
;
3)
( 12 )
Ex. 17.
.