
- •Міністерство освіти і науки україни донецький національний технічний університет
- •Integral calculus (інтеґральне числення)
- •Донецьк 2005
- •Integral calculus lecture no. 19. Primitive and indefinite integral
- •Point 1. Primitive
- •Properties of primitives
- •Point 2. Indefinite integral and its properties
- •Point 3. Integration by substitution (change of variable)
- •Point 4. Integration by parts
- •Lecture no.20. Classes of integrable functions
- •Point 1. Rational functions (rational fractions)
- •Point 2. Trigonometric functions
- •Universal trigonometrical substitution
- •Other substitutions
- •Point 3. Irrational functions
- •Quadratic irrationalities. Trigonometric substitutions
- •Quadratic irrationalities (general case)
- •Indefinite integral: Basic Terminology
- •Lecture no. 21. Definite integral
- •Point 1. Problems leading to the concept ofa definite integral
- •Point 2. Definite integral
- •Point 3. Properties of a definite integral
- •I ntegration of inequalities
- •Point 4. Definite integral as a function of its upper variable limit
- •Point 5. Newton-leibniz formula
- •Point 6. Main methods of evaluation a definite integral Change of a variable (substitution method)
- •Integration by parts
- •Lecture no.22. Applications of definite integral
- •Point 1. Problem – solving schemes. Areas
- •Additional remarks about the areas of plane figures
- •Point 3. Volumes
- •Volume of a body with known areas of its parallel cross-sections
- •Volume of a body of rotation
- •Point 4. Economic applications
- •Lecture no. 23. Definite integral: additional questions
- •Point 1. Approximate integration
- •Rectangular Formulas
- •Trapezium Formula
- •Simpson’s formula (parabolic formula)
- •Point 2. Improper integrals
- •Improper integrals of the first kind
- •Improper integrals of the second kind
- •Convergence tests
- •Point 3. Euler г- function
- •Definite integral: Basic Terminology
- •Lecture no. 24. Double integral
- •Point 1. Double integral
- •Point 2. Evaluation of a double integral in cartesian coordinates
- •Point 3. Improper double integrals. Poisson formula
- •Point 4. Double integral in polar coordinates
- •Double integral: Basic Terminology
- •Contents
- •Integral calculus 3
- •Integral calculus (Інтеґральне числення): Методичний посібник по вивченню розділу курсу ”Математичний аналіз” для студентів ДонНту (англійською мовою)
Міністерство освіти і науки україни донецький національний технічний університет
Integral calculus (інтеґральне числення)
Методичний посібник по вивченню розділу курсу ”Математичний аналіз” для студентів ДонНТУ (англійською мовою)
Розглянуто на засіданні кафедри вищої математики протокол № 9 від 16.05.2005 р.
Затверджено на засіданні навчально-видавничої ради ДонНТУ протокол № 3 від 17.06.05
Донецьк 2005
УДК 517.3 (075.8)
Косолапов Ю.Ф. Integral calculus (Інтеґральне числення): Методичний посібник по вивченню розділу курсу ”Математичний аналіз” для студентів ДонНТУ (англійською мовою)/ - Донецьк: РВА ДонНТУ, 2005. – 97 с.
Викладаються основні поняття теорії невизначеного, визначеного і подвійного інтеґралів . Докладно розглядаються приклади розв’язання типових задач. Вміщено англо-українсько-російський термінологічний словник. Дано завдання для самостійного розв’язання.
Велику допомогу в створенні посібника надали автору студенти факу-льтету економіки і менеджменту ДонНТУ Мамічева В., Маринова К., Боро- дина Ю., Костюк О., Полєнок Т., Бердянська В. (впорядкування лекційних конспектів, редагування англомовного тексту, робота над термінологічним словником). Значний внесок в написання посібника внесла старший викладач Слов”янського педагогічного університету Косолапова Н. В. (підготовка ілюстративного матеріалу, робота над англо-українсько-російським термінологічним словником). Всім їм автор висловлює щиру подяку.
Для студентів і викладачів технічних вузів.
УКЛАДАЧ: Косолапов Ю.Ф.
РЕЦЕНЗЕНТ: кандидат фізико-математичних наук, доцент Кочергін Є.В.
ВІДПОВІДАЛЬНИЙ ЗА ВИПУСК: зав. кафедри вищої математики ДонНТУ, доктор технічних наук, професор Улітін Г.М.
Integral calculus lecture no. 19. Primitive and indefinite integral
POINT 1. PRIMITIVE
POINT 2. INDEFINITE INTEGRAL AND ITS PROPERTIES
POINT 3. INTEGRATION BY SUBSTITUTION (CHANGE OF VARIABLE)
POINT 4. INTEGRATION BY PARTS
Point 1. Primitive
Major problem of differential calculus:
to find the derivative
or the differential
of a given function
.
Major problem of integral calculus is
inverse one:
to find a function
knowing its derivative
or its differential
.
Ex. 1. Find the equation of the curve through the
point
such that at any point
on the curve the slope is
.
Let
is a sought equation of the curve. By condition and geometrical sense
of the derivative
.
We must find a function
knowing its derivative
.
It’s obviously that
where C is
a constant. We can find it from the condition
.
Hence
.
Therefore the curve has equation
.
Def.1. A
function
is called a primitive [a primitive function, an antiderivative] of a
function
on a segment
if for any
the derivative of the function
equals
,
( 1 )
Ex. 2. Functions
are
primitives of a function
on
because of for any
.
Theorem 1 (existence
of a primitive). If a function
is continuous one on a segment
,
then it has a primitive on
.
We’ll prove this theorem later.