Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kratkie_lektsii_po_materialovedeniyu_Anikin_And...docx
Скачиваний:
10
Добавлен:
16.09.2019
Размер:
7.43 Mб
Скачать

3.5 Чугун.

Чугун – многокомпонентный, железоуглеродистый сплав с содержанием углерода свыше 2%. Чугун дешевле стали и обладает хорошими литейными свойствами (более низкая температура плавления, высокая жидкотекучесть и ~ в 2 раза меньшая линейная усадка), поэтому применяется для изготовления отливок.

В зависимости от состояния углерода в чуне различают:

- белый чугун (углерод в связанном состоянии, в виде карбида железа-цементита Fe3C), остальные виды чугунов (серый, ковкий высокопрочный) углерод содержат, в основном, в свободном состоянии, т.е. в виде графита, а отличаются друг от друга формой графитных включений (рис. 3.9):

- серый чугун – углерод в виде пластинчатого графита;

- высокопрочный чугун – углерод в виде шаровидного графита;

- ковкий чугун – углерод в виде хлопьевидного графита (углерод отжига).

Кроме того, в настоящее время получил применение чугун с вермикулярным (червеобразным) графитом.

Рис. 3.9 Форма графитных включений в чугунах

а) пластинчатая (лепестковая) – у серого чугуна

б) вермикулярная (червеобразная)

в) шаровидная (глобулярная) – у высокопрочного чугуна

г)хлопьевидная (углерод отжига) – у ковкого чугуна

3.5.1 Белый чугун.

Структура белых чугунов изучается по диаграмме (рис. 6.16, а). Они подразделяются на:

- доэвтектические (от 2,14 до 4,3% С);

- эвтектические (4,3% С);

- заэвтектические (от 4,3 до 5% С).

На рис. 3.10, б представлены кривые кристаллизации эвтектического, доэвтектического и заэвтектического чугунов.

Рассмотрим кристаллизацию эвтектического чугуна (сечение 1): в т.С жидкость кристаллизуется с образованием эвтектики – ледебурита, состоящего из цементитной матрицы и включений аустенита. В т.С аустенит имеет состав 4,3% С, а в т.Е - 2,14% С. При охлаждении от т.С до т.1 содержание углерода в аустените изменяется по кривой ES, углерод из аустенита выделяется в виде ЦП. В т.1 аустенит (входящий в ледебурит) растворяет только 0,8% С и ниже т.S превратится в перлит. Таким образом, ниже т.1 ледебурит будет превращенный: выше т.1 ледебурит состоит из А+Ц; а ниже – из П+Ц.

Рис. 3.10 Диаграмма Fe-Fe3C (а) и кривые кристаллизации чугунов (б)

Рассмотрим кристаллизацию доэвтектического чугуна (сечение 2, см. кривую кристаллизации на рис. 3.10, б): в т.2 из жидкости начинают выделятся кристаллы аустенита, состав жидкой фазы при охлаждении от т.2 до т.3 изменяется по кривой 2С; в т.3 оставшаяся жидкость (ее количество выражается отрезком ЕЗ) примет состав т.С, т.е. в ней будет растворено 4,3% С. Жидкость, имеющая 4,3% С и температуру 11470С превращается в эвтектику – ледебурит. Таким образом, после окончания кристаллизации в т.3 сплав состоит из А и Л (А+Ц1), причем кристаллиты аустенита содержат 2,14% С. При охлаждении от т.3 до т.4 содержание углерода в аустените падает по кривой ES, при этом выделяются кристаллы ЦП. В т.4 аустенит превратится в перлит. Таким образом, при комнатной температуре доэвтектический белый чугун состоит из перлита, цементита вторичного и превращенного ледебурита, состоящего из перлита, цементита первичного и вторичного.

Рассмотрим кристаллизацию заэвтектического белого чугуна (рис. 3.10 а и б, сечение 3). В т.5 до т.6 состав жидкой фазы обедняется углеродом по кривой 5С. В т.6 жидкость (ее количество соответствует отрезку 6F), приняв эвтектический состав и эвтектическую температуру, превратится в ледебурит. При дальнейшем охлаждении ниже т.6 превращения происходят только внутри ледебурита: сначала из аустенита ледебурита выделится ЦП, а затем оставшийся аустенит превратится в перлит в т.7. Таким образом, структура заэвтектического белого чугуна состоит из Ц1 и превращенного ледебурита.

В белом чугуне главной структурой является ледебурит. Как было показано выше, матрицей в ледебурите является цементит, в котором расположены дендриты перлита. Такая структура очень хрупкая, поэтому нелегированные белые чугуны не применяются. При сильном легировании белого чугуна Сr (≥ 12%) вместо цементита будут образовываться карбиды хрома, а матрицей будет аустенит или ферритно-карбидная смесь. Такой чугун можно использовать для изготовления деталей, которые работают на износ. Кроме того, при Сr ≥ 12% чугун становится коррозионно-стойким и жаропрочным применяется для химического машиностроения, для деталей печей, горно-добывающих машин и т.д.