Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бх шпоры.docx
Скачиваний:
8
Добавлен:
16.09.2019
Размер:
715.9 Кб
Скачать

Аминокислоты Аминокислотный состав белков

Ключ к пониманию структуры любого белка дает небольшая группа довольно простых молекул - -аминокислот, играющих роль строительных блоков. Для построения всех белков используется один и тот же набор 20 различных, ковалентно связанных друг с другом в определенной, характерной только для данного белка последовательности. Каждая аминокислота благодаря особенностям ее боковой цепи наделена химической индивидуальностью, поэтому всю группу 20 аминокислот можно рассматривать как алфавит "языка" белковой структуры.

Строение и классификация аминокислот

Все 20 аминокислот, встречающихся в белках, характеризуются общей структурной особенностью - наличием карбоксильной и аминогруппы, связанных с одним и тем же атомом углерода. Различаются же аминокислоты боковыми цепями (R-группами).

Ф ормулы и тривиальные названия важнейших аминокислот приведены в таблице. Для биологического функционирования аминокислот в составе белков определяющим является полярность радикала R. По этому признаку аминокислоты разделяют на следующие основные группы.

Аминокислоты, содержащие неполярный радикал R. Такие группы располагаются внутри молекулы белка и обуславливают гидрофобные взаимодействия.

Аминокислоты, содержащие полярный неионогенный радикал R. Аминокислоты этого типа имеют в составе бокового радикала полярные группы, не способные к ионизации в водной среде (спиртовый гидроксил, амидная группа). Такие группы могут располагаться как внутри, так и на поверхности молекулы белка. Они участвуют в образовании водородных связей с другими полярными группами.

Аминокислоты, содержащие радикал R, способный к ионизации в водной среде с образованием положительно или отрицательно запряженных групп. Такие аминокислоты содержат в боковом радикале дополнительный основный или кислотный центр, который в водном растворе может соответственно присоединять или отдавать протон.

В белках ионогенные группы этих аминокислот располагаются, как правило, на поверхности молекулы и обуславливают электростатические взаимодействия.

Стереоизомерия.

Все стандартные аминокислоты содержат ассиметрический атом углерода в -положении, т.е. атом углерода с четырьмя различными заместителями. Такой атом углерода является хиральным центром. Благодаря тому, что связи вокруг -атома углерода имеют тераэдрическое расположение, четыре различных заместителя могут располагаться в пространстве двумя различными способами, так что молекула может существовать в двух конфигурациях, представляющих собой несовместимые зеркальные отображения. Т аким образом, соединения с хиральным центром встречаются в двух изомерных формах, у которых одинаковые физические и химические свойства, за исключением одного - способности вращать плоскость плоскополяризованного луча света в разные стороны на определенный угол. Эти соединения обладают оптической активностью. В основе строгой системы классификации и обозначения стереоизомеров лежит не вращение плоскости поляризации света, а абсолютная конфигурация молекулы стереоизомера, т.е. взаимное расположение четырех заместителей. Для выяснения конфигурации оптически активных соединений их сравнивают с каким-нибудь одним соединением, выбранным в качестве эталона, например, глицеральдегидом.

П очти все природные биологически активные соединения, содержащие хиральный центр, встречаются только в какой-нибудь одной стереоизомерной форме - D или L. Все аминокислоты, входящие в состав белков, являются L-изомерами. Живые клетки обладают уникальной способностью синтезировать L-аминокислоты с помощью стереоспецифичных ферментов. Стереоспецифичность этих ферментов обусловлена ассимитрическим характером их активных центров.