Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
obshy_fayl.docx
Скачиваний:
22
Добавлен:
15.09.2019
Размер:
3.05 Mб
Скачать

Фототранзистори

Біполярний фототранзистор являє собою напівпровідникову структуру, у якій є два p-n-переходи (мал. 1.4). Прилад можна уявити таким що складається із фотодіода і транзистора .Фотодіодом є освітлювана частина переходу база - колектор, транзистором - частина структури, розташована безпосередньо під емітером. Можливі три схеми включення фотодіода як двохполюсника, коли один із виводів залишається вільним: із вільним колектором, із вільним емітером і з вільною базою. Перші дві з цих схем не відрізняються від схеми в микання p-n-переходу у фотодіодному режимі.

Мал. 1.4. Включення транзистора з відключеною базою.

Розглянемо роботу транзистора в схемі з загальним емітером (ЗЕ) при відключеній базі за відсутності освітлення (див. мал. 1.4). Оскільки колекторний p-n-перехід включений в оберненому напрямку, уся прикладена напруга падає на ньому і після вмикання струм у ланцюзі дорівнює оберненому струмові окремо взятого колекторного переходу ІКБ0. Цей струм складається з струму дірок із бази в колектор і струму електронів із колектора в базу. Відхід із бази дірок і прихід у неї електронів призводить до утворення негативного заряду в базі. Внаслідок цього потенційний бар'єр емітерного переходу знижується і для компенсації негативного заряду в базу з емітера входять дірки. Позначимо через h21Б коефіцієнт передачі (підсилення) емітерного струму транзистора: h21Б = (Ік / Іе)U =const. Для аналізованого випадку (ЗЕ) h21Б-а частина інжектованих дірок проходить через базу в колектор і в компенсації негативного заряду в базі бере участь тільки (1- h21Б)-а частина діркового струму емітера Іе. З умови електронейтральності струм, що утворює заряд, повинен бути рівний струмові, що його компенсує, тобто Іе (1-h21Б) = ІКБ0. Струм у всіх ділянках послідовного ланцюгу однаковий, тому

І = Іе = ІкіI = ІКБ0/(1- h21Б).

При освітленні бази фотострум збільшує обернений струм колекторного переходу, включеного в оберненому напрямку, тому що фотострум підсумовується з колекторним струмом.

На даний час відомі складні інтегральні мікросхеми з фототранзисторами. Прикладом є складовий транзистор-тверда схема з трьома транзисторами, сполученими за схемою Дарлінгтона, яку можна розглядати як емітерний повторювач. Коефіцієнти підсилення таких приладів можуть досягати h321 , що при достатньо великих струмах складає 105 … 106. У складових фототранзисторах досягаються малі значення границі чутливості. Вони відрізняються високим вхідним опором. Висока фоточутливість, широкий температурний діапазон роботи, простота технології виготовлення і висока надійність фототранзистора обумовлюють його застосування в різноманітних оптоелектронних пристроях. Наприклад, на основі фототранзистора розроблені

оптоелектроні перемикачі, що комутують струми до декількох десятків міліампер із швидкодією приблизно 10-6 с, комутатори аналогових сигналів, що переключають напруги до 1 мВ, смугою пропускання до десятків мегагерц, фотоприйомні матриці з накопиченням і інші пристрої.

Створення кремнієвих фотоприймачів припускає можливість використання технологічних прийомів виготовлення інтегральних схем. Це забезпечує високу ефективність їх застосування в системах мікрофотоелектроніки. Структури деяких кремнієвих фотоприймачів із внутрішнім підсиленням приведені на мал. 1.5.

31. Засоби термостабілізації роботи транзистора у підсилювачах

Коли говорять про термостабілізації, мають на увазі ті чи інші технічні засоби, що сприяють підвищенню стабільності (стійкості) режиму роботи транзисторів при зміні температури.

Сам по собі ток Iкo – величина невелика. У низькочастотних германієвих транзисторів малої потужності, наприклад, цей струм, виміряний при зворотній напрузі 5 В і температурі 20 ° С, не перевищує 20 … 30 мкА, а у кремнієвих транзисторів він не більше 1 мкА. Неприємність ж полягає в тому, що він змінюється при впливі температури. З підвищенням температури на 10 ° С струм Iка германієвого транзистора збільшується приблизно вдвічі, а кремнієвого транзистора – в 2,5 рази, якщо, наприклад, при температурі 20 ° С струм Iко германієвого транзистора становить 10 мкА, то при підвищенні температури до 60 ° С він може зрости до 150 … 160 мкA.

Toк IКО характеризує властивості тільки колекторного pn переходу. В реальних же рабачіх умовах напруга джерела живлення виявляється прикладеним не до одного, а до двох р-n переходам. При цьому зворотний струм колектора тече і через емітерний перехід і itaif би підсилює сам себе, В результату значення некерованого, але мимоволі змінюється під впливом, темпералгури струму збільшується, в несколию раз. А чим більше його частка а колекторному струмі, тим нестабільнішою режим роботи транзистора в різних температурних условіях.

І все ж германієві транзистори можуть нормально працювати при температурі навколишнього середовища від – 60 до +70 ° С, а кремнієві – від – 60 до +120 ° С. Зменшення впливу темлератури на струм колектора можливе або шляхом використання т апаратурі, призначеної для роботи зі значними коливаннями температури, транзисторів з дуже малим струмом Iко, або застосуванням спеціальних заходів, термостабілізірующіх режим роботи транзисторів.

Занур корпус транзистора в лід, а через два … три хвилини – в воду, нагріту до температури 50 … 60 ° С. Як тепер змінюється колекторний струм транзистора? Значно менше, ніж у першому досвіді. Спробуй довести температуру води до 80 … 90 ° С. Транзистор збереже працездатність, хоча, можливо, з'являться невеликі спотворення звуку.

Що змінилося при такому включенні базового резистора? Залишаючись елементом, через який на базу транзистора подається негативна напруга зсуву (0,1 … 0,2 В), він у Водночас утворив між колектором і базою ланцюг негативного зворотного зв'язку по постійному і змінному струмі, що трохи знизило посилення, але поліпшило якість роботи підсилювача. Зворотній зв'язок діє таким чином. При нагріванні транзистора колекторний струм збільшується, а напруга на колекторі зменшується. Одночасно зменшується і негативне напруга зсуву на базі транзистора, що тягне за собою зменшення колекторного струму. Таким чином, за рахунок автоматичного впливу колекторного струму на струм бази і струму бази на струм колектора режим роботи транзистора стабілізується.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]