
- •1. Що таке електрична енергія, її застосування?
- •2. Джерела,приймачі,споживачі електроенергії?
- •4. Використання електроенергії. Що таке енергоефективність та енерговикористання?
- •5. Використання електричної енергії. Що таке енергозбереження т а політика енергозбереження
- •6. Класифікація приймачів електричної енергії за ознакою перетворення енергії. Їх застосування
- •7. Групи електроприймачів. Систематизація електроприймачів електроенергії за основними експлуатаційно – технічними ознаками.
- •8. Класифікація приймачів за режимом роботи. Коротка характеристика.
- •9. Класифікація споживачів за родом струму. Коротка характеристика.
- •10. Класифікація споживачів за частотою змінного струму. Коротка характеристика.
- •13. Номінальні параметри режиму. Визначення номінальної потужності електроприймачів.
- •14. Характеристика приймачів за споживанням реактивної потужності.
- •15. Поняття пускового струму електроприймачів.
- •16. Характеристика електроприймачів за симетрією фаз. Поняття лінійності і не лінійності характеристики опорів фаз.
- •19.Потужність, що споживається індуктивністю. Визначення середнього значення. Фізичний зміст.
- •20. Механізм впливу конденсатора на обмін потужностями в мережі. Компенсація реактивної потужності.
- •21. Поняття коефіцієнта реактивної потужності, повної потужності, коефіцієнта потужності.
- •22. Чому концентрація реактивної потужності економічно недоцільна.
- •23.Основні причини низького коефіцієнта потужності в електроустановках.
- •24. Шляхи зниження споживання електроустановкою реактивної потужності.
- •25. Заміна малонавантажених двигунів двигунами меншої потужності. Порядок розрахунку асинхронного двигуна при довільному завантаженні.
- •26. Заміна малонавантажених двигунів двигунами меншої потужності. Визначення сумарних витрат двигуна.
- •Види з’єднань трифазних електричних кіл.
- •29. Класифікація трифазних кіл
- •30. Що таке електричне навантаження та графіки навантаження споживача. Їх характеристика.
- •33. Що таке максимальне навантаження електроприймачів. Його види.
- •34. Що таке розрахункове навантаження електроприймачів. Його види.
- •37. Що таке час найбільших втрат, коефіцієнт використання активної потужності та коефіцієнт увімкнення електроприймачів.
- •38. Що таке коефіцієнт завантаження та коефіцієнт максимуму електроприймачів.
- •43. Призначення та характеристика вимірних трансформаторів.
- •47. Робочий режим трансформатора. Його характеристика.
- •48. Втрати потужності в трансформаторі.
- •49. Коефіцієнт корисної дії трансформатора.
- •50. Паспортні дані трансформаторів. Визначення номінальних струмів обмоток трансформатора.
- •51. Параметри трансформатора, які визначають за напругою кз та втратами кз, за значенням струму хх та потужності хх.
- •52. Установки електропривода. Їх характеристика, режими роботи й застосування.
- •53. Вибір електродвигунів для урохомлень.
- •54. Асинхронний двигун. Принцип дії.
- •57. Синхронний двигун. Принцип дії та переваги, коефіцієнт корисної дії.
- •58. Запуск синхронного двигуна
- •59. Двигун постійного струму. Принцип дії, види зєднання обмоток збудження і якоря.
- •60. Електротехнологічні установки. Їх вплив на матеріал, що обробляється.
- •61. Класифікація електротермічних установок.
- •62. Електроустановки нагрівання опором. Принцип дії, нагрівальні елементи.
- •63. Електричні печі опору для плавлення металів.
- •64. Електроустановки індукційного нагрівання. Принцип дії.
9. Класифікація споживачів за родом струму. Коротка характеристика.
3а родом струму розрізняють електроприймачі змінного, постійного та імпульсного струмів. Сучасне генерування електричної енергії здійснюється практично повністю на змінному трифазному струмі промислової частоти, й переважна більшість електроприймачів працює на змінному струмі. Електроприймачі постійного струму, серед яких поширений електропривід постійного струму та низка електротехнічних устав, мають індивідуальні генератори постійного струму з приводом від різних типів механічних двигунів (наприклад, вітрових, гідравлічних тощо), сонячні чи гальванічні батареї або перетворювачі змінного струму на постійний. Для претворення змінного струму на постійний широко застосовуються керовані й некеровані напівпровідникові (найчастіше тиристорні) випрямлячі. Електроприймач постійного струму, що живиться від перетворювача (або ж сам перетворювач) з боку електропостачальної системи, можна розглядати як споживач змінного струму. Для живлення груп споживачів постійного струму (заводський, залізничний та міський електротранспорт, установки електролізу та інші електротехнології, деякі двигуни підіймально-транспортних та допоміжних механізмів, для яких необхідно здійснювати регулювання швидкості обертання тощо) споруджуються перетворювальні підстанції з напівпровідниковими випрямлячами або агрегатами типу електродвигун-генератор.
На імпульсному струмі працюють електроприймачі короткочасної дії, наприклад, машини контактного зварювання. Для їх живлення використовують індивідуальні перетворювачі, а також пристрої енергонагромаджеиня, наприклад, конденсатори. Ці приймачі разом з перетворювачами й нагромаджувачамн, що споживають електроенергію від електромережі змінного струму, можна також розглядати як електроспоживачі змінного струму.
10. Класифікація споживачів за частотою змінного струму. Коротка характеристика.
За частотою змінного струму розрізняють електроприймачі промислової, підвищеної та зниженої частоти. Промисловою називають частоту, на якій працюють генератори електростанцій та електропостачальні системи, а також переважна кількість споживачів електроенергії. В Україні, в усіх європейських країнах і в багатьох країнах інших континентів використовується промислова частота 50 Гц. У Північній Америці, в більшості країн Південної Америки, Азії та деяких країнах Африки промислова частота дорівнює 60 Гц. Порівняння цих двох частот за різними показниками на основі тривалого досвіду їх застосування показує, що системи з частотою 60 Гц мають певні переваги. Так, магнітний потік усіх електромагнітних апаратів (трансформаторів, двигунів змінного струму, дроселів тощо) однакової потужності на частоті 60 Гц на 17 % менший, ніж на частоті 50 Гц. Відповідно зменшуються поперечний переріз і маса магнітопроводу, середня довжина витків обмоток, загальна матеріалоємність електромагнітних пристроїв, а також їх вартість. До того ж на 20 % збільшується індуктивний опір, а внаслідок поверхневоого ефекту дещо більшим, ніж на частоті 50 Гц, буде й активний опір, що зумовлює зростання втрат напруги й потужності в елементах мережі. У 30-х роках XX століття були проведені відповідні дослідження, які показали, що оптимальною є частот близько 100 Гц. Однак перехід на цю частоту сучасних систем вже практично неможливий, тому що це вимагало б дуже великих втрат. Підвищеною називається будь-яка частога, більша від промислової. Серед цих частот розрізняють власне підвищену (застосовується, наприклад, частота 200-400 Гц для живлення переносного електроінструмента для зниження його маси), високу частоту (наприклад, 20 кГц застосовують для нагрівання та плавлення металу, 20-40 кГц - для живлення люмінесцентних ламп; до 100 кГц - в установках поверхневого гартування), надвисоку частоту (наприклад, 20 МГц застосовують для нагрівання напівпровідникових і діелектричних матеріалів, висушування дерева, швидкої полімеризації клею, термічного оброблення харчових продуктів тощо). В усіх випадках такі елекзропрнймачі живляться від індивідуальних перетворювачів чи генераторів частоти.
Це також стосується й електроприймачів зниженої частоти, меншої від промислової, наприклад, для деяких електротермічних установок, в яких зниження частота необхідна для збільшення глибини проникнення електромагнітного поля у велику за габаритами деталь Частота в таких установках - в межах від 1 до 25 Гц.