
- •1 . Матриці, основні поняття
- •2 ) Різновиди рівняння площини у просторі:за трьома точками, у відрізках на осях, нормальне.
- •2)Рівняння площини, що проходить через задану точку перпендикулярно до заданого вектора. Загальне рівняння площини і його дослідження.
- •4)З означення диференціала функції випливає, що при достатньо малих і має місце наближена рівність
- •5) Диференціальні рівняння першого порядку. Основні поняття.
- •1) Визначники квадратних матриць. Способи обчислення визначників.
- •2) Кут між площинами. Умови паралельності і перпендикулярності двох площин.
- •4) Обчислення наближеного значення функції в точці за допомогою повного диференціала.
- •5) Диференціальні рівняння з відокремлюваннями змінними.
- •1)Визначник -го порядку. Теорема Лапласа
- •2) . Різновиди рівняння прямої в просторі: канонічне, параметричні, за двома точками.
- •3) Похідні вищих порядків.
- •4) Знаходження екстремуму функції кількох змінних
- •3/Застосування правила Лопіталя у невизначеностях виду ; ; ; .
- •4. Невизначений інтеграл та його властивості.
- •5. Диференціальні рівняння другого порядку, що допускають пониження порядку
- •1. Основні поняття системи n лінійних алгебраїчних рівнянь з n змінними. Правило Крамера
- •2.Парабола: означення, рівняння, графік
- •3. Необхідна і достатня ознаки зростання (спадання) функції
- •4.Метод безпосереднього інтегрування невизначених інтегралів
- •5. Рівняння Бернуллі.
- •Перший спосіб
- •Другий спосіб
- •3. . Екстремум ф-ції, необхідна та достатня умови існування екстремуму.
- •5.Лінійними неоднорідними диф. Рівняннями 2го порядку зі сталими коефіцієнтами
- •1,Система лінійних алгебраїчних рівнянь (слар) — в лінійній алгебрі це система лінійних рівнянь виду:
- •2,Поняття границі функції
- •3, Необхідною умовою існування екстремуму в точці диференційовної функції є рівність нулю її похідної: .
- •4.Інтегрування функцій, які містять у знаменнику квадратний тричлен.
- •5. Поняття ряду. Збіжність ряду та його сума.
- •1.Основні поняття слар. Системи лінійних однорідних рівнянь.
- •4.Метод невизначених коефіцієнтів.
- •5.Властивості збіжних рядів.
- •1.Скалярний і векторний добуток. Властивості векторного добутку.
- •2.Теорема про зв'язок між нескінченно малими і нескінченно великими функціями.
- •3.Функції двох змінних. Область визначення.
- •4.Інтегрування функцій, що містять ірраціональності.
- •5.Необхідна ознака збіжності ряду.
- •5. Питання
- •2)Якщо в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність 0 і кожна з ф-цій та має границю в точці Хо, то .
- •3) Нехай в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність
- •1) ,2) ,3) , Якщо .
- •4. Визначений інтеграл та його властивості.
- •5. Радикальна ознака Коші.
- •1. Записати рівняння прямої, яка проходить через точку з кутовим коефіцієнтом .
- •2. Неперервність функції в точці: Застосування поняття неперервності при обчисленні границь функцій.
- •3. Градієнт функції .
- •4. Формула Ньютона-Лейбніца для обчислення визначених інтегралів.
- •5. Інтегральна ознака Коші.
- •22. 1. Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- •2. Властивості функцій, неперервних у точці.
- •23. 1. Рівняння прямої з кутовим коефіцієнтом.
- •2. Властивості функцій, неперервних на відрізку.
- •1. Матриці основні поняття. Різновиди матриць.
- •Задачі, які приводять до поняття похідної: задача про продуктивність праці, задача про кутовий коефіцієнт дотичної.
- •Загальна схема побудови графіка функції за допомогою похідної.
- •Застосування визначеного інтеграла до обчислення площ фігур, обмежених лініями.
- •5. Степеневі ряди. Основні поняття. Теорема Абеля.
- •Дії над матрицями. Властивості дій над матрицями.
- •Означення похідної. Диференційовність та неперервність функції в точці і на проміжку.
- •5. Радіус, інтервал, область збіжності ряду.
- •Визначники квадратних матриць. Способи обчислення визначників.
- •Правила диференціювання сталої, суми, добутку, частки функцій, та наслідки з них.
- •Екстремум функції, необхідна та достатня умови існування екстремуму.
- •5. Ряд Тейлора.
- •Визначник -го порядку. Теорема Лапласа.
- •2.Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
- •3) Економічний зміст похідної: похідні V(X), d(X), p(X) дорівнюють маргінальній вартості, доходу та прибутку, відповідно.
- •3.Градієнт — це вектор з координатами , який характеризує напрям максимального зростання функції z - f(X,y) у точці р0 (х0, у0):
- •4.Невласний інтеграл іі роду.
- •5.Використання рядів до наближених обчислень функцій. Алгоритм наближеного обчислення функції f (X) в точці х0
- •1.Мінори та алгебраїчні доповнення елементів.
- •2.Похідна складної та оберненої функцій.
- •3.Частинні похідні вищих порядків. Теорема про рівність мішаних похідних.
- •4.Застосування визначеного інтеграла до обчислення площ фігур, обмежених лініями
2.Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
Похідна функції y=f(x), в точці х0- це тангенс кута нахилу дотичної до даного напряму осі Ох або f’(x)=k=tgα,k-кутовийкоефіцієнт дотичної.Розглянемо рівняння дотичної і нормалі до графіка функції y=f(x), в точці х0.Оскільки дотична і нормаль проходять через точку з абсцисою х0,то рівняння будемо шукти у вигляді рівняння прямої,що проходить через задану точку М0(х0;у0),у даному напрямі,де k- кутовий коефіцієнтдотичної.Використовуючи геометричний зміст похідної одержемо f’(x0)=k.Оскільки у0= f’(x0), то отримаєм рівняння дотичної: у= f(x0)= f’(x0)(х-х0) або у= f(x0)+ f’(x0)(х-х0)
Нормаллю
до графіка функції в точці М0 називається
перпендикуляр проведений до дотичної
в цій точці.Рівняння:у=
похідна
від обсягу випущеної продукції зо часом
є продуктивністю праці в момент t0.Границю
називають граничними витратами
виробництва.
геометричний зміст похідної: похідна f (x) дорівнює кутовому коефіцієнту дотичної до графіка функції y f(x) в точці з абсцисою x.
3) Економічний зміст похідної: похідні V(X), d(X), p(X) дорівнюють маргінальній вартості, доходу та прибутку, відповідно.
Нормаллю до графіка функції в точці М0 називається перпендикуляр , проведений до дотичної в цій точці.
у=-1/f(x0)похідна*(х-х0)+ф від х0. рівняння.
3.Градієнт — це вектор з координатами , який характеризує напрям максимального зростання функції z - f(X,y) у точці р0 (х0, у0):
4.Невласний інтеграл іі роду.
Нехай
функція
визначена і неперервна при
,
а при
функція або не визначена, або терпить
розрив. У цьому випадку не можна говорити
про інтеграл
як про границю інтегральних сум, тому
що
не визначена на відрізку
,
і тому ця границя може і не існувати.
Інтеграл
від функції
,
необмеженої в точці b,
означається таким способом:
.
Означення. Якщо границя, яка стоїть справа, існує, то інтеграл називають невласним збіжним інтегралом, у противному випадку інтеграл називають розбіжним.
5.Використання рядів до наближених обчислень функцій. Алгоритм наближеного обчислення функції f (X) в точці х0
Розкласти f (x) у степеневий ряд в інтервалі його збіжності.
Точне значення f (x0) дорівнює сумі відповідного числового ряду f (x0) = аn x0n , а наближене значення – частковій сумі ряду S n (x0) , тобто f (x0) ≈ S n (x0) .
Оцінити похибку:
а) для знакопочергових рядів
│rn (x0) │=│fn+1 (x0) + fn+2 (x0) +… │< fn+1 (x0) │
б) для знакозмінних і знакододатних рядів величину rn (x0) обчислюють :
│rn (x0) │≤ │fn+1 (x0) │+│ fn+2 (x0) │+…< a1 +a2+…=S
Білет №30
1.Мінори та алгебраїчні доповнення елементів.
Алгебраїчні доповнення Аij елемента aij називають мінор цього елемента ,взятий із знаком «плюс»,якщо сума номерів рядка і стовпчика –число парне ,та зі знаком «мінус»,якщо непарне.Мінором Мij елемента aij визначника n-го порядку називається визначник ( n-1)-го порядку,який одержимо з даного визначника шляхом викреслювання і-го рядка та j-го стовпця,на пнрнтині яких знаходиться елемент aij.