- •1 . Матриці, основні поняття
- •2 ) Різновиди рівняння площини у просторі:за трьома точками, у відрізках на осях, нормальне.
- •2)Рівняння площини, що проходить через задану точку перпендикулярно до заданого вектора. Загальне рівняння площини і його дослідження.
- •4)З означення диференціала функції випливає, що при достатньо малих і має місце наближена рівність
- •5) Диференціальні рівняння першого порядку. Основні поняття.
- •1) Визначники квадратних матриць. Способи обчислення визначників.
- •2) Кут між площинами. Умови паралельності і перпендикулярності двох площин.
- •4) Обчислення наближеного значення функції в точці за допомогою повного диференціала.
- •5) Диференціальні рівняння з відокремлюваннями змінними.
- •1)Визначник -го порядку. Теорема Лапласа
- •2) . Різновиди рівняння прямої в просторі: канонічне, параметричні, за двома точками.
- •3) Похідні вищих порядків.
- •4) Знаходження екстремуму функції кількох змінних
- •3/Застосування правила Лопіталя у невизначеностях виду ; ; ; .
- •4. Невизначений інтеграл та його властивості.
- •5. Диференціальні рівняння другого порядку, що допускають пониження порядку
- •1. Основні поняття системи n лінійних алгебраїчних рівнянь з n змінними. Правило Крамера
- •2.Парабола: означення, рівняння, графік
- •3. Необхідна і достатня ознаки зростання (спадання) функції
- •4.Метод безпосереднього інтегрування невизначених інтегралів
- •5. Рівняння Бернуллі.
- •Перший спосіб
- •Другий спосіб
- •3. . Екстремум ф-ції, необхідна та достатня умови існування екстремуму.
- •5.Лінійними неоднорідними диф. Рівняннями 2го порядку зі сталими коефіцієнтами
- •1,Система лінійних алгебраїчних рівнянь (слар) — в лінійній алгебрі це система лінійних рівнянь виду:
- •2,Поняття границі функції
- •3, Необхідною умовою існування екстремуму в точці диференційовної функції є рівність нулю її похідної: .
- •4.Інтегрування функцій, які містять у знаменнику квадратний тричлен.
- •5. Поняття ряду. Збіжність ряду та його сума.
- •1.Основні поняття слар. Системи лінійних однорідних рівнянь.
- •4.Метод невизначених коефіцієнтів.
- •5.Властивості збіжних рядів.
- •1.Скалярний і векторний добуток. Властивості векторного добутку.
- •2.Теорема про зв'язок між нескінченно малими і нескінченно великими функціями.
- •3.Функції двох змінних. Область визначення.
- •4.Інтегрування функцій, що містять ірраціональності.
- •5.Необхідна ознака збіжності ряду.
- •5. Питання
- •2)Якщо в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність 0 і кожна з ф-цій та має границю в точці Хо, то .
- •3) Нехай в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність
- •1) ,2) ,3) , Якщо .
- •4. Визначений інтеграл та його властивості.
- •5. Радикальна ознака Коші.
- •1. Записати рівняння прямої, яка проходить через точку з кутовим коефіцієнтом .
- •2. Неперервність функції в точці: Застосування поняття неперервності при обчисленні границь функцій.
- •3. Градієнт функції .
- •4. Формула Ньютона-Лейбніца для обчислення визначених інтегралів.
- •5. Інтегральна ознака Коші.
- •22. 1. Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- •2. Властивості функцій, неперервних у точці.
- •23. 1. Рівняння прямої з кутовим коефіцієнтом.
- •2. Властивості функцій, неперервних на відрізку.
- •1. Матриці основні поняття. Різновиди матриць.
- •Задачі, які приводять до поняття похідної: задача про продуктивність праці, задача про кутовий коефіцієнт дотичної.
- •Загальна схема побудови графіка функції за допомогою похідної.
- •Застосування визначеного інтеграла до обчислення площ фігур, обмежених лініями.
- •5. Степеневі ряди. Основні поняття. Теорема Абеля.
- •Дії над матрицями. Властивості дій над матрицями.
- •Означення похідної. Диференційовність та неперервність функції в точці і на проміжку.
- •5. Радіус, інтервал, область збіжності ряду.
- •Визначники квадратних матриць. Способи обчислення визначників.
- •Правила диференціювання сталої, суми, добутку, частки функцій, та наслідки з них.
- •Екстремум функції, необхідна та достатня умови існування екстремуму.
- •5. Ряд Тейлора.
- •Визначник -го порядку. Теорема Лапласа.
- •2.Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
- •3) Економічний зміст похідної: похідні V(X), d(X), p(X) дорівнюють маргінальній вартості, доходу та прибутку, відповідно.
- •3.Градієнт — це вектор з координатами , який характеризує напрям максимального зростання функції z - f(X,y) у точці р0 (х0, у0):
- •4.Невласний інтеграл іі роду.
- •5.Використання рядів до наближених обчислень функцій. Алгоритм наближеного обчислення функції f (X) в точці х0
- •1.Мінори та алгебраїчні доповнення елементів.
- •2.Похідна складної та оберненої функцій.
- •3.Частинні похідні вищих порядків. Теорема про рівність мішаних похідних.
- •4.Застосування визначеного інтеграла до обчислення площ фігур, обмежених лініями
Правила диференціювання сталої, суми, добутку, частки функцій, та наслідки з них.
Правила
диференціювання: . Похідна сталої
дорівнює нулеві (сonst)
= 0. Якщо u
— будь-яка диференційовна функція
від х
і с
— довільна стала, то (cu)
= cu.
Якщо u
та v
— диференційовні функції від х,
то їх сума u
+ v є
диференційовною функцією:
.
Добуток двох диференційовних функцій
u
та v
є диференційовною функцією
Екстремум функції, необхідна та достатня умови існування екстремуму.
Максимум та мінімум функції кількох змінних називають екстремумами функції, а точку , де ф-ція має екстремум називають точкою екстремуму ф-ції.
Необхідна умова існування екстремуму.
Для того, щоб точка була точкою екстремуму ф-ції, визначеної в околі цієї точки, необхідно, щоб похідна ф-ції в цій точці була рівна нулю або не існувала в цій точці .
Достатня умова існування екстремуму.
Нехай f (x) диференційована в околі критичної точки , за винятком, можливо, самої точки , в якій ф-ція f (x) є неперервною . Тоді:
Якщо при переході через точку похідна змінює знак з мінуса на плюс, то в точці ф-ція має мінімум.
Якщо при переході через точку похідна змінює знак з плюса на мінус, то в точці ф-ція має максимум.
Якщо при переході через точку похідна не змінює знак, то точка не є точкою екстремума ф-ції.
4. Невласний інтеграл з нескінченною нижньою межею.
Нехай
т функція
визначена на проміжку
і є неперервною на будь-якому відрізку
,
де
<
.
Тоді визначений інтеграл
є функцією своєї нижньої межі. Невласним
інтегралом першого роду функції
на
проміжку
називають границю
і записують
.
Якщо границі будуть існувати
(дорівнюватимуть скінченому числу), то
відповідні невласні інтеграли називається
збіжними. Якщо ж границі не існують або
дорівнюють нескінченності, то такі
невласні інтеграли називаються
розбіжними.
5. Ряд Тейлора.
Ряд Тейлора — розклад функції у нескінченну суму степеневих функцій.
– ряд
Тейлора функції
(Тейлор-англійський
математик).
Теорема.
Якщо
функція
в інтервалі
розвивається
у степеневий ряд, то це розвинення єдине
і є рядом Тейлора функції
.
Основні формули:
Білет №28
Визначник -го порядку. Теорема Лапласа.
Визначник н-го порядку дорівнює сумі добутків елементів будьякого рядка чи стовпчика на іх алгебраїчне доповнення.Алгебраїчним доповненням(адюнтом) Аій з номерами ій визначника називається мінор цього елемента взятий із знаком + якщо сума номерів рядка і стовпчика число парне.Мінором k-того порядку k є [1; n-1] називається визначник утворений з елементів, які стоять на перетені будь-яких k рядків і k товпчиків визначника.
2.Похідна
сталої та функцій
(доведення). Таблиця похідних
Похідною
функції yf(x)
за
аргументом x
називають
границю відношення приросту функції
до приросту
аргументу
, коли довільним образом прямує до
нуля. Якщо ця
границя
існує, то її позначають через f (x)
або
yабо
,
або
,.
Теорема. Якщо функція y = f(x) диференційована в деякій точці x0 , то вона в цій точці неперервна.
1) Похідна постійної величини C дорівнює нулю,тобто C0
2) Якщо кожна з функцій u(x) та v(x) диференційована в точці x , то добуток цих функцій також має похідну в точці x , причому цю похідну знаходять за формулою
u(x)v(x)u(x)v(x)u(x)v(x)
3) Якщо u(x) та v(x) мають похідні в точці x і v(x)0, то частка цих функцій також має похідну в точці x , яку знаходять за формулою
4)Якщо кожна із функцій f1 (x), f 2 (x),...,f n (x)
(n – скінченне число) диференційована в деякі точці x , то їх алгебраїчна сума також є диференційованою в цій точці, причому похідна алгебраїчної суми цих функцій дорівнює такій самій алгебраїчній сумі їх похідних.
3.Частинний
приріст і ча
стинні
похідні першого порядку.
називається частинним приростом функції за змінною x.Аналогічно вводиться частинний приріст функції за змінною :
Якщо існує границя
,
то вона називається частинною похідною функції в точці за змінною x і позначається одним із таких символів:
.
Аналогічно частинна похідна функції за визначається як границя
і позначається одним із символів:
.
4.Відмінність між невласними інтегралами І та ІІ роду.
Визначений інтеграл існує лише при виконанні двох умов:
1) Щоб відрізок інтегрування був скінченим;
2) Щоб підінтегральна функція f(x) була неперервною.
Якщо не виконується хоча б одна з цих двох умов, то визначений інтеграл називається невласним, причому, якщо не виконується перша умова, то такий інтеграл називається невласним інтегралом І-го роду, а якщо ж не виконується друга умова, то такий інтеграл є ІІ-го роду.
5.
Ряд Маклорена.
Такий ряд називається рядом Маклорена функці f(x).
(К.Маклорен (1698-1746 рр.)-шотландський математик)
Білет №29
1.Визначники. Властивості визначників.
Квадратній матриці А n-ого порядку можна поставити у відповідність число det A(або IAI,або дельта )яке називають визначником цієї матриці.
Властивості визначника.
Властивість 1: Визначник не змінюється при транспортуванні.
Властивість 2: Якщо один із рядків визначника складається з нулів, то такий визначник дорівнює нулю.
Властивість 3: Якщо поміняти місцями будь-які два рядки визначника, то йго знак змінюється на протилежний.
Властивість 4: Визначник, який має два однакові рядки, дорівнює нулю.
Властивість 5: Якщо елементи будь-якого рядка визначника помножити на стале число С, то і визначник помножиться на С.
Властивість 6: Визначник, який має два пропорційні рядки, дорівнює нулю.
Властивість 7: Якщо всі елементи будь якого рядка визначника можна подати у вигляді суми двох доданків, то визначник бкде дорівнювати сумі двох визначників, у яких елементами цього рядка будуть відповідно перший доданок в першому визначнику і другий доданок в другому визначнику.
Властивість 8: Визначник не змінюється, якщо до елементів будь-якого рядка додати відповідні елементи будь-якого іншого рядка, попередньо помножені не деяке число.
