Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика часть 2.docx
Скачиваний:
14
Добавлен:
25.08.2019
Размер:
524.01 Кб
Скачать

42.)Спонтанное и вынужденное излучение. Люминесценция

Спонтанное излучение – излучение, возникающее при переходе с более высоких на более низкие уровни.

Вынужденное излучение – излучение, возникающее в результате «испускательных» переходов.

Люминесценции – все виды свечения, возбуждаемые за счёт любого вида энергии, кроме тепловой.

Виды люминесценции:

  • Хемилюминесценция – свечение, которое из-за окисления на воздухе светится за счёт энергии, выделяемой при химическом превращении;

  • Электролюминесценция – свечение, возникающее в газах при и твёрдых телах под воздействием электрического тока;

  • Катодолюминесценция – свечение твёрдых тел, вызванное бомбардировкой их электронами;

  • Фотолюминесценция – свечение, возбуждаемое поглощаемым телом электромагнитным излучением.

Закон Стокса: длина волны люминесцентного излучения больше длины волны света, вызывающего люминесценции.

44.)Общие сведения о квантовых статиках

Условия вырождения выполняются при достаточно низкой температуре Т (для идеального газа ( υ~ ) и высокой концентрации частиц. Тип вырождения различен для частиц с полуцелым спином (фермионов, статистика Ферми — Дирака) и частиц с целым спином (бозонов, статистика Бозе — Эйнштейна).

- условие вырождения идеального газа.

Квантовый газ — газ, состоящий из (квази) частиц, де-бройлевская длина волны которых намного превышает их радиус взаимодействия.

Фазовое пространство— пространство, на котором представлено множество всех состояний системы, так, что каждому возможному состоянию системы соответствует точка фазового пространства.

Элементарная ячейка кристалла - это тот минимальный воображаемый объём кристалла, параллельные переносы (трансляции) которого в трёх измерениях позволяют как из кирпичиков построить трёхмерную кристаллическую решётку в целом.

Функции распределения в квантовых статиках – вероятность нахождения в данной ячейке частицы.Эта функция равна среднему числу частиц, имеющих определённое значение координаты импульса в ячейке фазового пространства.

43.)Лазеры

Одна из особенностей газов состоит в многообразии различных физических процессов, приводящих к образованию инверсии населенностей. Такими процессами являются неупругие соударения атомов разного "сорта", диссоциации молекул при соударении их в электрическом разряде, возбуждение атомов электронным ударом, светом и т.д.Чаще всего инверсия населенностей создается в процессе электрического разряда. Эти лазеры называются газоразрядными. В них инверсия населенностей уровней создается за счет возбуждения атомов или молекул газа при их соударении со свободными быстрыми электронами, образующимися в электрическом разряде. Давление в газоразрядных лазерах выбирается в пределах от сотых долей до нескольких мм рт.ст. При меньших давлениях электроны, ускоренные электрическим полем, очень редко сталкиваются с атомами. При этом ионизация и возбуждение атомов происходят недостаточно интенсивно. При больших давлениях эти столкновения становятся, наоборот, слишком частыми. Из-за этого электроны не успевают достаточно ускориться в электрическом поле и приобрести энергию, необходимую для ионизации и возбуждения атомов, т.е. столкновения становятся мало эффективными.

Различают три типа газоразрядных лазеров: лазеры на нейтральных атомах, ионные лазеры и молекулярные лазеры. Они отличаются друг от друга как механизмом образования инверсии населенностей, так и диапазонами генерируемых волн λ. Различие в диапазонах обусловлено различиями в энергетическом спектре нейтральных атомов, ионов и молекул.

Наряду с достоинствами газ как рабочая среда для лазера обладает и недостатком: плотность газа значительно ниже плотности твердых тел, и поэтому в единице объема газа нельзя получить такое большое количество возбужденных атомов, излучающих свет, как в твердом теле. В результате этого даже большие размеры газовых лазеров пока не дают возможности получить те высокие импульсные мощности, которые дают лазеры на твердом теле. Твердотельный лазер — лазер, в котором в качестве активной среды используется вещество, находящееся в твёрдом сотоянии (в отличие от газов в газовых лазерах и жидкостей в лазерах на красителях). Существует большое количество твердотельных лазеров, как импульсных, так и непрерывных. Наибольшее распространение среди импульсных получили лазер на рубине и неодимовом стекле (стекле с примесью Nd). Неодимовый лазер работает на длине волны l = 1,06 мкм. Лазер на рубине, наряду с лазером на неодимовом стекле, являются наиболее мощными импульсными лазерами. Полная энергия импульса генерации достигает сотен дж при длительности импульса 10-3 сек. Оказалось также возможным реализовать режим генерации импульсов с большой частотой повторения (до нескольких кгц). Примером твердотельных лазеров непрерывного действия являются лазеры на флюорите кальция CaF2 с примесью диспрозия Dy и Л. на иттриево-алюминиевом гранате Y3Al5O12 с примесями различных редкоземельных атомов. Большинство таких лазеров работает в области длин волн l от 1 до 3 мкм. Если не принимать специальных мер, то спектр генерации твердотельных Л. сравнительно широк, т.к. обычно реализуется многомодовой режим генерации. Твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла). В качестве активаторов обычно используются ионы редкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырехуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах. Применение лазеров для обработки, резания и микросварки твердых материалов оказывается экономически более выгодным (например, пробивание калиброванных отверстий в алмазе лазерным лучом сократило время с 24 ч до 6—8 мин). Лазеры применяются для скоростного и точного обнаружения дефектов в изделиях, для тончайших операций (например, луч CO2-лазера в качестве бескровного хирургического ножа), для исследования механизма химических реакций и влияния на их ход, для получения сверхчистых веществ. Широко применяется лазерное разделение изотопов, например такого важного в энергетическом отношении элемента, как уран. Получение и исследование высокотемпературной плазмы. Эта область их применения связана с развитием нового направления — лазерного управляемого термоядерного синтеза. Лазеры широко применяются в измерительной технике. Лазерные интерферометры (в них источником света служит лазер) используются для сверхточных дистанционных измерений линейных перемещений, коэффициентов преломления среды, давления, температуры.. Сила лазера «прощупала» поверхность Луны и помогла советским ученым скорректировать ее карту. Интересное применение лазеры нашли в голографии