
- •Москва «КолосС» 2004
- •Глава 1 регуляция физиологических функций
- •1.1. Понятие о гомеостазе
- •1.2. Гуморальные и нервные механизмы регуляции функций
- •1.3. Единство нервной и гуморальной регуляции
- •1.4. Основные принципы регуляции физиологических функций
- •Глава 2 физиология возбудимых тканей
- •2.1. Физиология процессов возбуждения в нервной системе
- •2.1.1. Структурные особенности нервных клеток и волокон
- •2.1.2. Электрические явления в возбудимых тканях
- •3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- •2.1.2.1. Ультраструктурная организация клеточной мембраны
- •2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- •2.1.2.2. Потенциал покоя
- •2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- •2.1.2.4. Механизмы генерации потенциала действия
- •Р ис. 2.10. Ионный ток через нервную мембрану при различных фиксированных значениях мембранного потенциала
- •2.1.2.5. Ионные каналы
- •2.1.2.6. Свойства потенциала действия
- •2.1.2.7. Распространение возбуждения
- •2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- •2.2. Физиологические свойства мыщц
- •2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- •2.2.2. Теория скольжения нитей
- •2.2.3. Электромеханическое скольжение
- •2.2.4. Механика мышцы
- •2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- •Глава 3 физиология системы крови
- •3.1. Значение и функции крови
- •3.2. Количество крови в организме
- •3.3. Состав крови
- •3.4. Физико-химические свойства крови
- •3.5. Гемостаз и свертывание крови
- •3.1. Плазменные факторы свертывания крови
- •3.6. Форменные элементы крови
- •3.7. Регуляция кроветворения
- •3.8. Группы крови
- •3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- •Глава 4 физиология иммунной системы
- •4.1. Структура иммунной системы
- •4.1.1. Центральные органы иммунной системы
- •4.1.2. Периферические органы иммунной системы
- •4.1.3. Клетки иммунной системы
- •4.2. Индукция и регуляция иммунного ответа
- •4.2.1. Антигены
- •4.2.2. Активация лимфоцитов
- •4.2.3. Иммунный ответ гуморального типа
- •4.2.4. Антитела
- •4.2.5. Иммунный ответ клеточного типа
- •4.3. Факторы естественной резистентности
- •4.3.1. Естественные барьеры
- •4.3.2. Система фагоцитов
- •III стадия n стадия
- •4.3.3. Система комплемента, пропердин
- •4.3.4. Лизоцим
- •4.3.5. Интерфероны
- •4.3.6. Взаимодействие антиген—антитело
- •Глава 5 физиология пищеварения
- •5.1. Сущность процесса пищеварения
- •5.2. Физиологические основы голода и насыщения
- •5.3. Методы исследования деятельности пищеварительного тракта
- •5.4. Пищеварение в ротовой полости
- •5.5. Пищеварение в желудке
- •5.1. Функциональное значение секреторных клеток желудка
- •Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- •5.6. Особенности желудочного пищеварения у некоторых видов животных
- •5.7. Пищеварение в тонком кишечнике
- •5.8. Пищеварение в толстом кишечнике
- •5.9. Всасывание
- •Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- •5.2. Гормоны желудочно-кишечного тракта
- •5.11. Пищеварение у птиц
- •Глава 6 физиология кровообращения
- •6.1. Физиология сердца
- •6.2. Свойства сердечной мышцы
- •6.3. Сердечный цикл и клапанный аппарат сердца
- •6.1. Частота сокращений сердца в 1 мин
- •6.4. Физические явления, связанные с работой сердца
- •6.2. Систолический и минутный объемы крови у животных
- •6.5. Регуляция работы сердца
- •6.6. Движение крови по кровеносным сосудам
- •6.3. Величина артериального давления у животных, мм рт. Ст.
- •6.7. Регуляция движения крови по сосудам
- •6.8. Особенности кровообращения при различных состояниях организма
- •Глава 7 физиология дыхания
- •7.1. Внешнее дыхание
- •7.3. Изменение давления в грудной полости при дыхании:
- •7.1. Частота дыхательных движений в 1 мин
- •7.2. Газообмен в легких
- •7.3. Транспорт газов кровью, газообмен в тканях
- •7.4. Регуляция дыхания
- •Сосудистых
- •7.5. Особенности дыхания у птиц
- •Глава 8 физиология выделительных процессов
- •8.1. Выделительная функция почек
- •8.2. Структурная организация почек
- •8.3. Мочеобразование
- •8.1. Концентрирующая способность почки
- •8.4. Гомеостатическая функция почек
- •8.2. Факторы, влияющие на клубочковую фильтрацию
- •8.3. Факторы, регулирующие канальцевую реабсорбцию
- •8.5. Регуляция процессов образования мочи
- •8.6. Состав и свойства конечной мочи
- •8.4. Объем мочи, выделяемой за сутки
- •8.7. Механизмы выведения мочи
- •8.8. Выделительная функция кожи
- •Глава 9 физиология размножения
- •9.1. Половое созревание и половая зрелость
- •9.1. Половая и физиологическая зрелость самки
- •9.2. Физиология репродуктивной системы самцов
- •9.2. Средние количественные показатели спермы
- •9.3. Физиология репродуктивной системы самок
- •9.3. Особенности половых циклов
- •9.4. Оплодотворение
- •9.5. Беременность
- •9.6. Различные типы плацент у млекопитающих:
- •9.6. Роды
- •9.4. Продолжительность родов
- •9.7. Послеродовой период
- •9.8. Трансплантация зародышей у животных
- •9.9. Особенности размножения птиц
- •Глава 10 физиология лактации
- •10.1. Развитие молочной железы
- •10.1. Химический состав секретов молочной железы, %
- •10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- •10.4. Пассивный перенос материнских антител
- •10.3. Передача пассивного иммунитета
- •10.2. Биосинтез основных компонентов молока
- •10.3. Физико-химические показатели молока
- •10.4. Структурная организация секреторного процесса
- •10.5. Регуляция секреции молока
- •10.6. Выведение молока
- •10.7. Физиологические основы машинного доения
- •Глава 11 физиология обмена веществ и энергии
- •11.1. Терморегуляция
- •11.1. Ректальная температура у различных видов животных
- •11.2. Белковый (азотистый) обмен
- •11.2.1. Основные этапы белкового обмена
- •11.2.2. Регуляция белкового обмена
- •11.3. Углеводный обмен
- •11.3.1. Основные этапы углеводного обмена
- •11.3.2. Регуляция углеводного обмена
- •11.4. Липидный обмен
- •11.4.1. Основные этапы липидного обмена
- •11.4.2. Регуляция липидного обмена
- •11.5. Обмен воды
- •11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- •11.6. Минеральный обмен
- •11.6.1. Физиологическая роль макроэлементов
- •11.6.2. Физиологическая роль микроэлементов
- •11.6.3. Регуляция минерального обмена
- •11.7. Витамины
- •11.7.1. Жирорастворимые витамины
- •11.7.2. Водорастворимые витамины
- •12.1. Механизмы взаимодействия гормона с клетками
- •12.2. Общие механизмы регуляции внутренней секреции
- •12.1. Нейрогормоны гипоталамо-гипофизарной системы
- •12.3. Гипофиз
- •12.4. Щитовидная железа
- •12.5. Надпочечники
- •12.6. Поджелудочная железа. Внутренняя секреция
- •12.7. Эндокринная функция половых желез
- •12.8. Тимус
- •12.9. Эпифиз
- •12.10. Тканевые гормоны
- •12.11. Гормоны и продуктивность животных
- •Глава 13
- •13.1. Нейроны и синапсы
- •13.2. Рефлекторная деятельность
- •13.3. Свойства нервных центров
- •13.4. Координация рефлекторных процессов
- •13.5. Частная физиология
- •13.5.1. Спинной мозг
- •Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- •13.5.2. Продолговатый мозг и варолиев мост
- •13.5.3. Средний мозг
- •13.5.4. Ретикулярная формация
- •13.5.5. Мозжечок
- •13.5.6. Промежуточный мозг
- •13.5.7. Подкорковые ядра
- •13.6. Физиология вегетативной нервной системы
- •13.1. Строение и функции симпатической и парасимпатической нервных систем
- •Глава 14
- •14.1. Понятие о нервизме
- •14.2. Методы исследования функций коры больших полушарий
- •14.3. Характеристика условных рефлексов и механизм их образования
- •Слуховая
- •14.4. Торможение условных рефлексов
- •14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- •14.6. Типы высшей нервной деятельности
- •14.7. Сон и гипноз
- •14.8. Две сигнальные системы действительности
- •14.9. Теория функциональных систем
- •Глава 15 физиология анализаторов
- •15.1. Рецепторные клетки — начальное звено анализатора
- •15.2. Двигательный анализатор
- •15.2.1. Мышечное веретено
- •15.2.2. Сухожильный рецептор гольджи
- •15.2.3. Рефлекс на растяжение мышцы
- •15.3. Кожный анализатор
- •15.3.1. Механорецепторы кожи
- •15.3.2. Терморецепторы кожи
- •15.3.3. Болевые рецепторы кожи
- •15.4. Обонятельный анализатор
- •Рецептора:
- •15.5. Вкусовой анализатор
- •15.6. Слуховой анализатор
- •Активности:
- •15.7. Анализатор положения тела в пространстве
- •15.8. Зрительный анализатор
- •15.8.1. Структура и функция сетчатки
- •15.8.2. Цветовое зрение
- •15.8.3. Переработка зрительных сигналов в сетчатке
- •15.8.4. Защитный аппарат глаза
- •15.9. Анализаторы внутренней среды opi лии 1мл
- •15.9.1. Висцеральные механорецепторы
- •15.9.2. Висцеральные терморецепторы
- •15.9.3. Висцеральные хеморецепторы
- •15.9.4. Болевые висцеральные рецепторы
- •Глава 16 этология
- •16.1. Формы поведения
- •16.2. Поведенческие реакции
- •16.3. Факторы, влияющие на поведение
- •Оглавление
- •Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- •Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- •Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- •Глава 9. Физиология размножения (и. О. Боголюбова) 351
- •Глава 10. Физиология лактации (в. Г. Скопичев) 392
- •Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- •Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- •Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- •Глава 16. Этология (т.А. Эйсымонт).., 697
- •214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.
8.4. Гомеостатическая функция почек
Почки — это основной орган, обеспечивающий постоянство объема и состав внутренней среды, и прежде всего крови. Реализацию гомеостатической функции осуществляют специальные рефлекторные системы, включающие специализированные рецепторы (оценивающие объем циркулирующей крови — волюмо-рецепторы, осморецепторы, ионорецепторы), системы переработки информации (нервные центры) и «командные» структуры, опосредующие свое влияние на ткань почки за счет эфферентных нервов и гормональных влияний.
Осморегуляция. При избыточном содержании воды в крови концентрация осмотически активных веществ снижается и осмотическое давление крови падает, что улавливается как центрально расположенными осморецепторами в области супраопти-ческих ядер гипоталамуса, так и периферическими рецепторами почек, печени, селезенки. В результате существенно снижается выработка антидиуретического гормона (АДГ) и его поступление в кровь из нейрогипофиза, что приводит к усилению выделения воды почкой за счет образования менее концентрированной мочи. Обезвоживание организма приводит к увеличению концентрации осмотически активных веществ. В результате активируются осморецепторы, усиливается продукция и выведение АДГ, возрастает канальцевая реабсорбция воды, включается механизм концентрации мочи, уменьшается мочеотделение.
Волюморегуляция. Объем внутрисосудистой жидкости оценивается рецепторами, реагирующими на изменение тонуса сосудистой стенки. В области низкого давления от рецепторов левого и правого предсердия импульсы передаются в ЦНС по афферентным волокнам блуждающего нерва. При увеличении объема крови (внутрисосудистой циркулирующей жидкости) повышается импульсация с волюморецепторов, что вызывает экскрецию натрия и воды. Одновременная активация волюмо-и осморецепторов приводит к усилению выведения воды, уменьшая ее реабсорбцию.
Ионорегуляция. Данные о наличии рецепторов, оценивающих содержание натрия (введение в область III желудочка гипертонического раствора хлорида натрия вызывает антидиурез, а гиперто-
336
22 — 3389
337
нических растворов сахара такого эффекта не вызывает), указывают на возможность избирательной оценки концентраций отдельных ионов и адекватной реакции выделительной системы в ходе рефлекторных реакций. Известны гормоны, регулирующие ре-абсорбцию и секрецию отдельных ионов в различных отделах нефрона. Реабсорбция натрия возрастает в дистальных отделах почечных канальцев под влиянием гормона надпочечника аль-достерона, который в отношении калия оказывается веществом, стимулирующим его удаление с мочой. Известно, что альдостерон связывается с клетками дистального и собирательного сегментов почек и может увеличивать реабсорбцию натрия путем синтеза РНК и одного или более специфических белков. В результате может непосредственно стимулироваться механизм активного транспорта натрия, увеличиваться проницаемость для натрия мембраны клеток, обращенных в просвет канальца, или стимулироваться клеточный метаболизм и возрастать поставка энергии для транспортных процессов. Выделение калия уменьшается под действием инсулина.
Снижение концентрации кальция в крови вызывает выделение паращитовидными железами паратгормона, благодаря которому увеличивается реабсорбции этого иона в почечных канальцах. Ди-стальный отдел нефрона представляет собой главный участок, где осуществляется действие паратиреоидного гормона. Гиперкальцие-мия стимулирует секрецию щитовидной железой тирокальцито-нина, который снижает концентрацию кальция в крови за счет усиления его экскреции почкой и мобилизации в костной ткани. В почечных канальцах регулируется также уровень реабсорбции магния, хлора, фосфатов, сульфатов и других ионов.
Регуляция кислотно-щелочного равновесия. Концентрация ионов водорода в моче может существенно меняться в сторону снижения (до 4) или возрастания (до 8,0), что призвано обеспечить постоянство рН плазмы крови на уровне 7,36. Механизм удаления ионов водорода (закисления мочи) обеспечивается процессами секреции этого иона в просвет канальцев. Наличие в апикальной плазматической мембране фермента карбоангидразы обеспечивает гидратацию двуокиси углерода и образование угольной кислоты, которая сразу диссоциирует на ион водорода и бикарбонатный ион.
Водородные ионы секретируются в канальцевую жидкость, а образованные бикарбонатные ионы возвращаются в плазму, т. е. секреция Н+ соответствует образованию бикарбонатов в плазме. Поступающий из плазмы крови в ходе ультрафильтрации NaHC03 взаимодействует с ионами водорода, секретированными клетками, что приводит к образованию диоксида углерода (рис. 8.10). В просвете канальцев ионы водорода способны связываться и с фосфатами, и с другими анионами, что приводит к экскреции с мочой титруемых кислот, а в плазме крови увеличивается уровень оснований. Кроме того, аммиак, выделяющийся в кровь как конечный продукт
Перитубулярный капилляр Клетка
Просвет канальца
Профильтровавшиеся ,
HPOf'+Na+-
НРО|"+Н+-It
Н2РС>4
- Na+ ^
■H+ HCOJ.
\ /
"H,C03
IfCa H,0+CO, |Ca H2C03
/ 4
г Н+ HCO,-
_ NH3 _
t
Глутамин
Na+
-~нсо3-
-HCOJ -NH,
Jnh3-
HHNH, NH, I
Рис. 8.10. Образование титруемой кислотности и ионов аммония в почечном канальце
экскретированных водородных
белкового обмена, также способен связываться с ионами водорода с образованием иона аммония. Аммиак связывает кислые продукты, выделяемые с мочой, образует аммонийные соли и, удаляясь за пределы организма, замещает натрий и калий. Аммиак, используемый для нейтрализации кислой мочи, образуется в почках из аминокислоты глутамина за счет функционирования фермента глутамина-зы, которая активируется в случаях необходимости коррекции реакции мочи. В итоге почки стабилизируют концентрацию ионов водорода в плазме крови: при снижении резервной щелочности крови выделяется кислая моча, а при алкалозе —более щелочная.
Таким образом, количество ионов с мочой — суммарная экскреция Н+, может быть представлена следующим выражением:
Суммарная экскреция Н+ = NH4 + титруемая кислотность НС03 мочи.
Обычно общее количество экскретированных ионов водорода равняется водородной нагрузке. Суммарная экскреция Н+ может отсутствовать или иметь отрицательное значение, что происходит при бикарбонатной нагрузке (высоком содержании цитратов в корме), цитраты метаболизируются до бикарбонатов и моча приобретает щелочную реакцию.
Экскреция. Через почку выводится большая часть конечных продуктов обмена веществ. Особенно это важно для метаболизма белков и нуклеиновых кислот, в ходе которого образуются различные продукты азотистого обмена. В процессе превращения аминокислот аминогруппа (—NH2) удаляется путем дезаминирования и образует аммиак (NH3), который выделяется в виде аммонийных солей или используется в синтезе азотсодержащих соединений — мочевины и мочевой кислоты.
Синтез мочевины осуществляется в последовательных ферментативных реакциях, составляющих орнитиновый цикл. Аммиак и двуокись углерода, конденсируясь с фосфатом, образуют карбо-моилфосфат, который используется для синтеза цитруллина из
338
22*
339
-Альдостерон ~^
Увеличение
реабсорбции
Na
Кора
надпочечника
Диста~Льный\
каналец
Сужение ^ .
кровеносных
cocydot
Ангиотензин
П
\
Конвертирующий
фермент Ренцн
Ангиотензин
I
о.2-глобулин
(из
печени)
Нуклеиновые кислоты содержат две группы азотистых соединений: пурины (аденин и гуанин) и пиримиджы (цитозин и тимин). У некоторых животных пурины выделяются в виде мочевой кислоты, у других — пуриновая структура расщепляется до промежуточных соединений или аммиака. Человек и высшие обезьяны из-за отсутствия фермента уриказы не способны метаболизировать мочевую кислоту и выделяют ее с мочой, остальные же млекопитающие обладают этим ферментом и преобразуют мочевую кислоту в аллан-тоин. Среди собак у долматинского дога обнаружено интенсивное выделение мочевой кислоты, но не из-за отсутствия уриказы, а как следствие наследственного почечного дефекта, препятствующего канальцевой реабсорбции, а, возможно, экскреции мочевой кислоты путем активного канальцевого транспорта.
Гормонопоэз. Почки вырабатывают ряд физиологически активных веществ, поступающих в кровоток и участвующих в системных реакциях организма, что подтверждает их эндокринную функцию. Гранулярные клетки юкстагломерулярных нефронов способны синтезировать и выделять в кровь ренин — протеолитический фермент, который в плазме крови отщепляет от ангиотензиногена декапеп-тид ангиотензин I, затем от ангиотензина I отщепляются еще две аминокислоты, и образуется весьма активное соединение ангиотензин П. Ангиотензин II вызывает сужение сосудов, стимулирует секрецию альдостерона и антидиуретического гормона и усиливает почечную реабсорбцию натрия, а также участвует в формировании чувства жажды (рис. 8.11).
Секреция альдостерона призвана повышать реабсорбцию натрия и экскрецию калия в дистальном отделе нефрона. По принципу обратной отрицательной связи секреция ренина ингибирует-ся ангиотензином II и антидиуретическим гормоном, но вместе с этим секреция ренина существенно зависит от состояния баро-рецепторов почки, содержания натрия в начальной части канальцев и симпатических нервных влияний. Таким образом, уровень активности ренина плазмы снижается при увеличении объема внеклеточной жидкости, солевой нагрузке, избытке минералкор-тикоидов и гиперкалиемии. Повышение уровня содержания рени-
Рис. 8.11. Схема взаимодействия системы ангиотензина и альдостерона
на развивается при уменьшении объема внеклеточной жидкости, ограничении соли, потере жидкости (рвота, понос, диуретики), гипокалиемии, избытке катехоламинов и при увеличении содержания в плазме крови ренин-субстрата за счет усиленного синтеза в печени. Глюкокортикоиды и половые стероидные гормоны способны повысить уровень ангиотензиногена до концентраций, активирующих ренин.
Калликреиновая система во многом схожа с рениновой. Калли-креин представляет собой пептидазу, воздействующую на а2-глобу-лин (киниген) с образованием кинина. Термин 1 кинин 0 относится к трем биологически активным пептидам: метионил-глицил-бради-кинину, лизил-брадикинину и брадикинину. Кинины— это мощные вазодилататоры. Почечная калликреиновая система является локальной гормональной системой, вовлеченной в регуляцию кровотока и экскрецию натрия. Калликреин синтезируется в корковом веществе почки и обеспечивает продукцию мощного сосудорасширяющего вещества каллидина. Известно, что калликреин почек освобождается и поступает в кровь под влиянием высокого артериального давления, ацетилхолина, простагландина, дофамина, низких доз норадрёналина, ангиотензина II, минералкортикоидов и при быстром увеличении объема жидкости, циркулирующей в организме.
340
341
В мозговом веществе почки образуются простагландины, в том числе и простагландин А2, который называют также медуллином, а также простациклин, или Pgl2. Простагландины способны влиять на периферическое сосудистое сопротивление за счет их действия как вазодилататоров, натрийуретических веществ, ингибиторов адренергических медиаторов и изменения чувствительности клеток к антидиуретическому гормону. Почечный синтез Pgl2 стимулируется ангитензином II, брадикинином и вазопрессином. Увеличение синтеза происходит за счет повышенного освобождения арахидоновой кислоты из почечных липидов под влиянием фермента ацилгидролазы.
Регуляция количества эритроцитов осуществляется одним из гормонов почки — эритропоэтином, который представляет собой гликопротеин с м. м. 40 000. Стимулом для повышенного синтеза эритропоэтина тканями почки является уменьшение напряжения в ней кислорода.
Клетки почки участвуют в метаболизме витамина D: образующийся в печени прогормон витамин D3 почки извлекают из кровотока и преобразуют в ряд диокси-производных (наиболее важными являются 1,25-диокси-Ь3 и 24,25-ahokch-D2). 1,25-диокси-Б3 как весьма активный стероидный кальциемический гормон увеличивает транспорт кальция и фосфора в кишечнике, регулирует ре-абсорбцию кальция в почечных канальцах и повышает минеральную резорбцию костей.
Метаболизм. Помимо обеспечения собственных энергетических затрат при выполнении специфических функций почки участвуют в обмене веществ, призванном поддерживать гомеостаз. В почке имеется система новообразования глюкозы — глюконеогенез. При длительном голодании из почек в кровоток может поступать до половины общего количества глюкозы. Поступающие при фильтрации в просвет канальцев низкомолекулярные белки и пептиды расщепляются клетками канальцев до аминокислот, которые через базолатеральную мембрану возвращаются в кровоток. В ткани почки синтезируется один из важных компонентов биомембран фосфатидилинозит, а свободные жирные кислоты включаются в состав триглицеридов и фосфолипидов, которые кровотоком поставляются к местам депонирования или утилизации.
действуя через бета-адренорецепторы, стимулируют секрецию ренина и приводят в действие ангиотензинный механизм регуляции клубочковой фильтрации за счет спазма выносящих и (или) приносящих артериол. Вместе с этим, воздействуя на тонус сосудов клубочка, меняя состояние мезангиальных клеток, подоцитов, различные вещества существенно преформируют клубочковую фильтрацию (табл. 8.2).