Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тематика курсовых работ по курсу.doc
Скачиваний:
77
Добавлен:
14.08.2019
Размер:
9.81 Mб
Скачать

5.3.3. Волоконно-оптический гироскоп.

Большинство конструкций ВОГ реализуют схему кольцевого оптического гироскопа нерезонансного типа с источником излучения, находящимся вне кольцевого многовиткового оптического контура, в котором проявляется вихревой эффект Саньяка. Это обстоятельство, а также технологические достижения последних лет в области разработки высококачественного оптоволокна, твердотельных полупроводниковых источников света, элементов интегральной оптики и др. предопределяют ряд достоинств ВОГ по сравнению с ЛГ. К ним следует отнести простоту конструкции с твердотельным выполнением (в перспективе полностью на гибридных интегральных микроэлементах), меньшую массу, габариты и стоимость. Современные конструкции ВОГ уже практически сопоставимы по точности с ЛГ. Все это определяет большие перспективы применения ВОГ в БИНС, в частности, для БПЛА.

На рис. 5.14 представлена принципиальная схема ВОГ.

Излучение источника света разделяется в расщепителе на две волны и , которые поступают в противоположные концы катушки оптического волокна, распространяются по ней в противоположных направлениях, рекомбинируют на расщепителе и смешиваются в фотоприемнике, где интерферируют. На выходе фотоприемника – фототок , линейно связанный с интенсивностью света на его входе. При отсутствии вращения оптического контура обе волны, распространяясь по нему, проходят одинаковый путь, и разность фаз волн и на фотоприемнике отсутствует. При вращении оптического контура с угловой скоростью эти волны проходят разные оптические пути, причем разность путей 2ΔL на длине одного витка катушки оптического волокна определяется соотношением (5.36). Разность путей порождает разность времен прихода волн на фотоприемник и, следовательно, соответствующую разность фаз электромагнитных колебаний Δφc, пропорциональную угловой скорости [84, 85] (см. 5.41)

где индекс " " означает, что разность фаз Δφc возникает за счет эффекта Саньяка; - число витков катушки оптического волокна; - площадь, охватываемая витком катушки; R – радиус витка; L- длина волокна.

Из (5.54) следует выражение для масштабного коэффициента К ВОГ

В известных конструкциях ВОГ величина К может составлять (1…40)

Теперь, на основе (5.51), имея в виду, что разность частот колебаний , угол расхождения лучей , получим для интенсивности света в фотоприемнике:

(5.55)

а для тока на выходе фотоприемника:

(5.56)

где - квантовая эффективность фотоприемника; - заряд электрона; - постоянная Планка; - частота излучения; - амплитуда фототока.

Согласно (5.54), (5.56), приращение фототока определяет угловую скорость вращения основания . Практическая реализация этого принципа измерения требует прежде всего таких схемно-конструктивных решений ВОГ, в которых обеспечивается свойство взаимности, при наличии которого встречные волны при проходят одинаковые оптические пути, сохраняя определенное состояние поляризации и форму волнового фронта. С этой целью в конструкциях катушки ВОГ часто используют одномодовое, сохраняющее поляризацию волокно, а излучение в катушку вводят и выводят из нее через одномодовый, фильтр, включающий, в частности, волоконный одномодовый пространственный фильтр и поляризатор (рис. 5.15) [78, 84, 86].

Следует отметить, что наличие в этой схеме ВОГ двух расщепителей дополнительно выравнивает фазы волн , которые дважды проходят через расщепители и дважды от них отражаются, в то время как в невзаимной схеме ВОГ на рис. 5.14 волна проходит через расщепитель дважды, а дважды от него отражается с соответствующим скачком фазы. Характерные параметры катушки одномодного оптического волокна ВОГ составляют: диаметр сердцевины волокна – 7 мкм, полный диаметр волокна с защитным покрытием – 250 мкм, длина волокна – 1000 м и более, потери в волокне – 0,2 дБ/км при длине волны 1,55 мкм. В качестве источников излучения используются лазерные диоды, светодиоды и суперлюминисцентные диоды; в качестве фотоприемников – полупроводниковые и лавинные фотодиоды [87].

Схема на рис. 5.15 – схема минимальной взаимной конфигурации. В соответствии с (5.54), (5.55) зависимость интенсивности от саньяковской разности фаз Δφc носит косинусоидальный характер (рис. 5.16), причем собственно Δφc весьма мала.

Так, например, применительно к ВОГ, в котором используется катушка с радиусом 0,1 м и длиной волокна 1000 м при скорости вращения разность фаз Δφc=10-5 рад. Очевидно в этом случае, когда рабочая область на характеристике I(Δφc) находится вблизи точки Δφc=0, крутизна преобразования Δφc, а следовательно и , в информационный сигнал очень мала. Кроме того, при вариациях , как видно из (5.55), имеет место аддитивная погрешность (дрейф нулевого сигнала).

Для повышения чувствительности ВОГ между встречными волнами искусственно вводят разность фаз Δφc=π⁄2; в этой точке крутизна характеристики I(Δφc) - максимальна. На практике с учетом минимизации отношения сигнал/шум величину смещения Δφc часто выбирают в диапазоне π⁄2< Δφc < 3π⁄4 [84]. Введение разности фаз обычно осуществляют путем размещения на одном из входов в катушку фазового модулятора. Наибольшее распространение получила схема с использованием взаимного фазового модулятора (рис. 5.17).

Собственно фазовый модулятор, например, представляет собой несколько витков оптоволокна, намотанного на пьезокерамическую трубку. Модулирующее напряжение, поступающее от задающего генератора и деформирующее трубку периодически изменяет длину оптоволокна и его показатель преломления, в результате чего периодически изменяется оптический путь волны, проходящей через модулятор, и возникает искусственное приращение ее фазы. Это приращение выбирается равным . В соответствии с рис. 5.17 модуляция фазы волны , распространяющейся в катушке по часовой стрелке, происходит с временным опережением по отношению к модуляции фазы волны , где - время обхода катушки. Выбирая в качестве полупериода модуляции, обеспечивают периодическое изменение разности фаз ΔφМ с амплитудой [84, 86].

Рис. 5.18 иллюстрирует процесс фазовой модуляции встречных волн в ВОГ по прямоугольному закону и соответственно процесс модуляции интенсивности света в фотоприемнике. При модуляция интенсивности света отсутствует.

При она имеет место, причем для интенсивностей на рис. 5.18 справедливо:

Глубина модуляции ∆I:

5.57)

Выходной сигнал, пропорциональный (5.57), формируется в демодуляторе (рис. 5.17). Существенно то, что, помимо обеспечения максимальной крутизны преобразования Δφc в информационный сигнал, в этой схеме ВОГ исключается аддитивная погрешность, порождаемая вариациями , коэффициентами усиления в электронной цепи обработки сигнала и амплитуды модуляции, но сохраняется мультипликативная погрешность – вариации масштабного коэффициента и его нелинейность.

Следует отметить, что во взаимном фазовом модуляторе часто используется косинусоидальная модуляция. В этом случае ΔφM=ΔφMOcosωM t где - соответственно амплитуда и частота модуляции [84, 85]. Тогда на основе (5.56) получим:

. (5.58)

Разложение правой части (5.58) в ряд по бесселевым функциям первого рода дает:

(5.59)

где - бесселевы функции нулевого, первого, второго и третьего порядка соответственно.

Для , в частности, имеем:

причем своего максимума достигает своего максимума, равного 0,53, при .

Осуществляя демодуляцию на частоте , получим согласно (5.59) выходной сигнал, пропорциональный 2I0J1мо)sin∆φс; при этом собственно частота модуляции составляет .

С целью уменьшения уровня мультипликативных погрешностей, обеспечения линейности его выходной характеристики в широком диапазоне измеряемых угловых скоростей ВОГ выстраивают по компенсационной схеме (схема с обнулением саньяковской разности фаз Δφc). Для этого в оптическом контуре распространения встречных волн необходимо обеспечивать дополнительную искусственную разность фаз ΔφМ (сигнал обратной связи) таким образом, чтобы выполнилось условие:

Δφc + ΔφМ =0. (5.60)

Наиболее распространенный способ формирования переменной ΔφМ заключается в использовании, например, пьезокерамического фазового модулятора, как и ранее расположенного на входе в катушку оптического волокна, на который, в рассматриваемом случае, поступает пилообразное напряжение, скорость изменения которого пропорциональна Δφc. На рис. 5.19 представлены характерные законы модуляции этим напряжением фаз встречных волн соответственно, причем модуляция осуществляется с запаздыванием по отношению к модуляции на время распространения волны по катушке оптического волокна.

При достижении максимального значения модулятором осуществляется скачок фазы на величину . Как видно на рис. 5.19, необходимая разность фаз ΔφМ накапливается на интервалах и составляет , где - крутизна пилообразного изменения . Из (5.60) с учетом (5.54) получим:

где - оптическая длина одного витка катушки.

Тогда крутизна такова:

(5.61)

Фактически формирование эквивалентно сдвигу круговой частоты волн; сдвиг же циклической частоты совпадает по модулю с разностью частот , определяемой согласно (5.48) как разность частот встречных волн в резонаторе ЛГ.

Как видно (рис. 5.19), в процессе формирования компенсирующей разности фаз ΔφM=φ′MτO за счет "сброса" фазы на интервалах возникают стробы, порождающие погрешности ВОГ в течение времени после каждого сброса, если высота этих строб отличается от . Известны подходы к уменьшению влияния этого возмущающего фактора [84].

Следует отметить также, что подсчет числа "сбросов" (с учетом их знака) обеспечивает измерение приращения угла Δα поворота ВОГ на интервале измерения. Действительно, на основе (5.61) для ВОГ с катушкой диаметром из волокна с показателем преломления имеем:

(5.62)

Интегрированием (5.62) на периоде пилообразной фазовой модуляции, на котором достигается приращение фазы, равное , для соответствующего этому приращению угла поворота Δα мин получим:

(5.63)

Соотношение (5.63) определяет минимальное приращение угла поворота, регистрируемое при каждом скачке фазы на . Так, при длине волны , диаметре катушки , показателе преломления волокна приращение Δαмин составляет . Схема компенсационного ВОГ с пилообразной фазовой модуляцией представлена на рис. 5.20.

Современные конфигурации ВОГ характеризуются использованием цифровой обработки информации в его замкнутом контуре и широким применением интегральных оптических компонент (светоделителей, поляризаторов, фазовых модуляторов и др.), выполняемых по гибридной технологии, в частности на электрооптической подложке из ниобата лития. Схема высокоточного ВОГ с сохраняющим поляризацию волокном, в котором используются эти подходы, представлена на рис. 5.21.

Одним из перспективных направлений построения высокоточных ВОГ является применение в катушке сравнительно недорогого одномодового оптического волокна с деполяризацией поступающего в него оптического излучения [84, 86]. Перспективными являются трехосные архитектуры ВОГ с использованием ряда элементов для одновременного обслуживания всех трех измерительных каналов [78].

Рассмотрим теперь кратко основные источники погрешностей ВОГ. Фундаментальный порог чувствительности ВОГ регламентируется дробовым (фотонным) шумом фотоприемника, уровень которого, в свою очередь, зависит от мощности оптического излучения, поступающего в фотоприемник. При этом среднеквадратичное значение соответствующего фазового шума фотоприемника σ∆φп определяется соотношением [85]:

(5.64)

где - мощность входного излучения в ВОГ; ∆f- полоса пропускания системы обработки сигнала.

Из (5.64) с учетом (5.54) для среднеквадратичного значения порога чувствительности ВОГ как измерителя угловой скорости получим

(5.65)

Для ВОГ, имеющего , , , , порог чувствительности (5.65) составляет .

Одним из основных источников погрешностей ВОГ, а также основным механизмом потерь в волокне, является обратное рэлеевское рассеяние. Оно представляет собой рассеяние волн на микронеоднородностях волокна, а также за счет их отражения от дискретных оптических элементов в направлениях, противоположных основным встречным волнам. При этом когерентная составляющая обратного рассеяния интерферирует с основными волнами, что порождает флуктуации разности фаз встречных волн. Соответствующая максимальная погрешность измерения угловой скорости вращения определяется соотношением [86]:

где - угол ввода излучения в сердцевину волокна; - коэффициент рассеяния света в волокне.

Одним из эффективных способов уменьшения этой погрешности является уменьшение степени когерентности между основными и рассеянными волнами. Это может быть достигнуто, в частности, за счет использования широкополосного источника света с малой длиной когерентности. При этом, вследствие большой разницы оптических путей основных и рассеянных волн, интерференционная картина, порождаемая их взаимодействием, размывается. В качестве широкополосных источников используют, в частности, суперлюминисцентные источники света. Отметим, что уменьшению влияния обратного рэлеевского рассеяния способствует и использование периодической фазовой модуляции.

Погрешности ВОГ порождаются также за счет нелинейного электрооптического эффекта Керра, заключающегося в изменении показателя преломления оптической среды при изменении интенсивности распространяющейся в ней световой волны. В этой связи различие мощностей встречных волн за счет, например, температурной нестабильности разветвителей приводит к невзаимности встречных волн и к дополнительному сдвигу фаз между ними. Соответствующая погрешность измерения угловой скорости такова [85]:

(5.67)

где - коэффициент Керра среды; - импеданс среды; - коэффициент расщепления световой волны по мощности; - интенсивность источника излучения; знак обозначает осреднение по времени.

Как следует из (5.67), при погрешность, порождаемая эффектом Керра, отсутствует. Она отсутствует также при выполнении условия , что достигается использованием, например, суперлюминесцентных источников.

Другим невзаимным эффектом, который приводит к появлению погрешности ВОГ, является магнитооптический эффект Фарадея. Во внешнем магнитном поле при повороте плоскости поляризации излучения изменяется показатель преломления волокна, и появляется дополнительная разность фаз встречных волн. Этот эффект не столь выражено проявляется в ВОГ с волокном, сохраняющим поляризацию. Наиболее эффективный способ уменьшения этих погрешностей – магнитное экранирование ВОГ.

Существенный вклад в погрешности ВОГ вносят также зависящие от времени температурные градиенты вдоль оптического волокна [85]. Они порождают нестационарные изменения показателя преломления и длин участков волокна. Эти изменения приводят к невзаимности, поскольку встречные волны проходят эти участки за различное время. В предположении, что температура оптического волокна катушки изменяется линейно от его внутреннего слоя намотки к наружному, соответствующую погрешность измерения угловой скорости можно представить так:

где - температура в точке оптического волокна; ∆Т - изменение разности температур по сечению катушки; - линейный коэффициент теплового расширения волокна; δ∆Т/ δt - температурный градиент во времени.

Оценки показывают, что погрешность является одной из определяющих в ВОГ. Уменьшение может быть достигнуто за счет симметричной, относительно середины оптического контура, намотки катушки. При этом части волокна, которые отстоят одинаково от средней точки оптического контура, находятся рядом друг с другом. Это приводит к симметричному распределению температуры относительно средней точки и теоретически к исключению погрешности . Одновременно используется температурное циклирование катушки после ее намотки для стабилизации размеров и относительного положения витков, а также алгоритмическая компенсация остаточного температурного дрейфа в процессе эксплуатации ВОГ.

Помимо указанных возмущающих факторов следует отметить также вибрационные возмущения, которые порождают погрешности ВОГ через возмущение параметров оптического волокна. Возникающая при этом погрешность пропорциональна скорости изменения вибрационного ускорения с коэффициентом порядка , где - ускорение силы тяжести (НТК физоптика). Существенно может быть также влияние акустических шумов через пьезооптический эффект в частотной полосе до нескольких [84].

В целом погрешности ВОГ характеризуются уровнем нестабильности масштабного коэффициента (главным образом температурной) и его нелинейностью, систематической составляющей дрейфа (смещение нуля) гироскопа, стабильностью дрейфа в запуске и от запуска к запуску, шумовой составляющей выходного сигнала. Существенный вклад в эти параметры вносят, естественно, не только оптические, но и электронные компоненты ВОГ.

В таблице 5.3 представлены основные характеристики ряда ВОГ отечественных компаний.