Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матан экзамен.doc
Скачиваний:
4
Добавлен:
14.08.2019
Размер:
832.51 Кб
Скачать

Свойства бесконечно малых

  • Сумма конечного числа бесконечно малых — бесконечно малая.

  • Произведение бесконечно малых — бесконечно малая.

  • Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.

  • Если an — бесконечно малая последовательность, сохраняющая знак, то   — бесконечно большая последовательность.

7 Непрерывность функции. Признаки непрерывности функции

15 lim f(x)=B

x→x0

Если B=f(x0), то ф-ия f(x) – непрерывна в точке х0.

св-ва :

lim c=c

x→x0

если f(x)=b, φ(x)=c то lim (f(x)±φ(x))=b±c

x→x0

lim (f(x)*φ(x))=b*c

x→x0

lim (f(x)/φ(x))=b/c (c≠0)

x→x0

Если f(x)≤φ(x)≤g(x) и lim f(x)=lim g(x) =b то lim φ(x)=b

x→x0 x→x0 x→x0

если при этом b=f(x0); c=φ(x0) то св-во 2 можно записать:

(Если f(x) или φ(х) непрерывны в т. х0 то в т.х0

непрерывны сумма, разность, произведение и

частное(φ(х0))≠0 этих функций

Если ф-ия непрерывна в каждой точке отрезка, то она непрерывна на этом отрезке

16 Линейная ф-ия непрерывна в любой точке А∈(-∞;+∞)

y=kx+b=f(x)

f(A)=kA+b

k≠0 ⇒ | f(x)-f(a) |<ε | kx-b-ka+b | <ε

| k (x-f) | <ε

| k |*| x-a | <ε

| x-a | < ε/| k |=δ(ε)

y=ax²+bx+c (-∞;+∞)

17 y=Bª (B>0)

Докажем, что y=Bª непрерывна на (-∞;+∞)

lim Bª=1

a→0

| Bª-1 | <ε 1) B=1

2) B>1

-ε < Bª-1 < ε 1-ε < Bª < ε+1

LOGb(1-ε)<a<LOGb(1+ε)

min {-LOGa(1-ε); LOGa(1+ε)}= δε

| x | < δε

LOGaB

18 y=cos x (-∞; +∞)

| cos x – cos a | < ε

| 2 sin (x-a)/2 + sin (x+a)/2 | < ε

2 | sin (x-a)/2 | + | sin (x+a)/2 | < ε

2 | sin (x-a)/2 | < ε

| x-a | < ε =δ(ε)

y=sin x (-∞; +∞)

y=tg x=sin x/cos x кроме x=π/2+πk

y=ctg x=cos x/sin x кроме x=πk

Основные свойства непрерывных функций

Функция f: [ab] → R называется непрерывной на сегменте [ab], если она непрерывна на интервале ]ab[ и в точке a непрерывна справа, а в точке b - слева.

Пусть функция f: [ab] → R непрерывна на сегменте [ab], тогда:

1) она ограничена на этом сегменте;

2) если  , то на сегменте [ab] существуют точки x1 и x2 такие, что f(x1) = mf(x2) = M (теорема Вейерштрасса);

3) она принимает на каждом сегменте  , все промежуточные значения между f(α) и f(β) (теорема Коши).

В частности, если f(α)f(β) < 0, то найдется такое значение γ (α < γ < β), то f(γ) = 0.

Функция f: ]ab[ → R называется кусочно-непрерывной на интервале ]ab[, если она непрерывна во всех точках этого интервала, кроме конечного числа точек разрыва первого рода и конечного числа точек устранимого разрыва.

8 Теоремы о пределах

Теоремы о пределах

  1. Бесконечно большие и бесконечно малые.

Функция f(x) стремится к бесконечности при x стремящимся к a, если для любого M > 0 можно указать такое значение  > 0, что для всех x удовлетворяющих неравенству xa < имеет место неравенство f(x) > M.

limx a=

  1. Функция ограниченная при x a.

  2. Функция ограниченная при x .

  3. Теорема. Если limx a f(x)=b, то функция f(x) ограниченная при x a.

  4. Бесконечно малые и их свойства. limx a (x)=0

Теорема. 1. Если f(x)=b+, где  - б.м. при x a, то limx a f(x)=b и обратно, если limx af(x)=b, то можно записать f(x)=b+(x).

Теорема. 2. Если limx a (x)=0 и (x)  0, то 1/ .

Теорема. 3. Сумма конечного числа б.м. есть б.м.

Теорема. 4. Произведение б.м. на ограниченную функцию есть б.м.

  1. Теоремы о пределах.

Теорема. 1. Предел суммы есть сумма пределов.

Теорема. 2. Предел произведения есть произведение пределов.

Теорема. 3. Предел частного есть частное пределов (если знаменатель не обращается в 0).

Теорема. 4. Если u(x)  z(x)  v(x), и limx a u(x)=limx a v(x)=b, то limx a z(x)=b. ("Теорема о двух милиционерах").

  1. Первый замечательный предел.

0.5sin(x) < 0.5x < 0.5tg(x)

lim x 0 

sin(x)

x

=1.

  1. Второй замечательный предел.

Переменная величина 

 

1+

1

n

 

n  

при n  имеет предел, заключенный между 2 и 3