
- •Нестационарные процессы в электрических цепях
- •1. Основы теории сигналов
- •1.1 Сигналы и формы их представления
- •Классификация сигналов
- •Сигналы во временной области. Типовые сигналы, применяемые в радиотехнике
- •Сигналы в спектральной области
- •Свойства преобразований Фурье
- •Ширина спектра сигналов
- •1.2. Одиночные сигналы и их спектры
- •1.2.1. Одиночные видеосигналы и их спектры
- •Спектр дельта-функции
- •Спектр функции включения
- •Спектр одиночного прямоугольного видеоимпульса (опви)
- •Спектр видеоимпульса колоколообразной формы (окви)
- •Спектр треугольного видеоимпульса
- •1.2.2 Одиночный радиосигналы и их спектры. Одиночный прямоугольный радиоимпульс (опри)
- •Одиночный колокольный радиоимпульс (окри)
- •1.3. Периодические сигналы и их спектры Периодическая последовательность прямоугольных видеоимпульсов (пппви).
- •1.4. Переодические радиосигналы и их спектры
- •1.4.1. Радиосигнал с однотональной амплитудной модуляцией
- •Радиосигнал с однотональной амплитудной модуляцией с подавленной несущей
- •1.4.2. Периодическая последовательность прямоугольных радиоимпульсов (пппри)
- •1.4.3. Радиосигнал с однотональной угловой модуляцией
- •1.5. Сложные сигналы и их спектры
- •1.5.1. Пачки импульсов
- •Колокольная пачка прямоугольных видеоимпульсов
- •Прямоугольная пачка прямоугольных видеоимпульсов
- •Спектры пачек прямоугольных радиоимпульсов
- •1.5.2. Сигналы с внутриимпульсной модуляцией
- •Радиоимпульс с линейной частотной модуляцией
- •Фазо-кодо-манипулированные импульсы (фкм)
- •3. Общие сведения о спектральном методе анализа
- •3.1. Связь между спектрами сигналов на входе и на выходе линейной электрической цепи
- •3.1.1. Прохождение сигналов с дискретными спектрами
- •3.1.2. Если сигнал имеет сплошной спектр, то можно установить аналогичную связь между элементарными гармониками входного и выходного сигнала
- •3.2. Особенности передачи сигналов с дискретным спектром через линейные цепи
- •3.2.1. Прохождение сигнала с однотональной am через настроенный колебательный контур
- •3.2.2. Прохождение периодической последовательности прямоугольных радиоимпульсов через настроенный колебательный контур
- •3.3. Понятие о квазистационарном методе
- •3.3.1. Прохождение радиосигнала с однотональной угловой модуляцией через колебательный контур
- •3.3.2. Прохождение радиосигнала с лчм через электрические цепи
- •3.4. Особенности передачи сигналов со сплошными спектрами через линейные электрические цепи
- •3.4.1. Общие сведения о неискажающей цепи
- •3.4.2. Использование линейных цепей для задержки сигналов
- •3.4.3. Понятие о сжатии лчм и фм сигналов рэт
- •3.5. Влияние ограниченности полосы пропускания цепи и неравномерности ее ачх на форму выходных сигналов
- •3.5.1. Влияние ограниченности полосы пропускания цепи на форму передаваемых сигналов
- •3.5.2. Влияние неравномерности ачх цепи на форму передаваемых сигналов
- •Оглавление нестационарные процессы в электрических цепях
- •1. Основы теории сигналов.
- •1.1 Сигналы и формы их представления
- •3. Общие сведения о спектральном методе анализа.
Сигналы в спектральной области
Аналитическое или графическое представление сигналов как функции частоты является представлением сигналов в спектральной (частотной) области.
Различают представление сигналов в спектральной области с дискретным и сплошным спектрами.
Можно доказать, что периодические сигналы обладают дискретными спектрами, а одиночные и пачечные сигналы – сплошными.
Пусть некоторый периодический сигнал
представлен совокупностью u(t)
гармонических колебаний:
.
Совокупность частот
представленных колебания является
частотным спектром данного сигнала.
Совокупность амплитуд на соответствующих частотах
…
является амплитудно-частотным спектром данного сигнала.
Совокупность начальных фаз на соответствующих частотах
…
...
является фазо-частотным спектром данного сигнала.
Амплитудно-частотный спектр (АЧС) (рис. 1.19) и фазо-частотный спектр (ФЧС) (рис. 1.20) могут быть изображены в виде системы, состоящей из двух графиков.
Рис. 1.20
Для одиночных и пачечных сигналов АЧС и ФЧС будут сплошными.
Для расчета спектров, т.е. для представления сигналов как функции частоты, используют следующие основные приемы:
тригонометрические преобразования,
интегральное преобразование Фурье,
разложение в ряд Фурье.
В результате интегрального преобразования Фурье вычисляют спектральную плотность заданного одиночного сигнала и представляют ее в показательной форме записи
,
здесь
– спектральная плотность,
– модуль спектральной плотности,
–
аргумент спектральной плотности,
– сигнал.
Аналитические выражения
или
,
а так же
или
являются зависимости, описывающими АЧС
и ФЧС данного сигнала.
В результате разложения в ряд Фурье представляют заданный периодический сигнал в виде совокупности гармонических составляющих:
,
где
–
частота гармонической составляющей с
номером
,
-
постоянная составляющая,
–
амплитуда гармонической составляющей
с номером K,
–
начальная фаза гармонической составляющей
с номером
.
Расчет
и
проводится согласно выражению
,
где
-
комплексная амплитуда ряда Фурье.
Расчет
проводится аналогично, при
:
Между спектральной плотностью
и комплексной амплитудой ряда Фурье
существует связь:
,
,
которая
позволяет, зная значения спектральной
плотности, вычислить комплексную
амплитуду ряда Фурье путем вычисления
спектральной плотности на частотах
и умножения полученных значений на
множитель
.
Свойства преобразований Фурье
При спектральном анализе сигналов объем математических преобразований в ряде случаев можно существенно сократить, если использовать следующие свойства преобразований Фурье.
Свойство аддитивности
Если
≓
,
≓
,
≓
,
...,
≓
,
то для
≓
.
Свойство однородности
Если
≓
,
то для
≓
,
где
- постоянный множитель.
Свойство сдвига аргумента
Если
≓
,
то
≓
Свойство смещения
Если
≓
,
то
≓
Свойство дифференцирования
Если
≓
,
то
≓
Свойство интегрирования
Если
≓
,
то
≓