
- •Введение
- •Основные принципы энергосберегающей политики в нефтепереработке и нефтехимии.
- •1Совершенствование технологии с целью снижения удельной энергоемкости.
- •1.1Выбор оптимального вида сырья
- •1.2Применение более эффективных катализаторов.
- •1.3Применение более эффективных физико-химических процессов выделения целевых продуктов.
- •1.4Применение комбинирования процессов, установок и производства
- •1.5Применение более совершенных видов оборудования, прогрессивных методов его расчета и условий эксплуатации
- •1.6 Совершенствование химической схемы процесса
- •2Повышение эффективности использования энергоресурсов
- •Химико-технологическая система (хтс)
- •3 Основные элементы хтс
- •4Топология химико-технологических систем
- •Энергокомплекс химико-технологических систем
- •5Структура энергокомплекса хтс
- •6Виды энергии
- •7Энергоресурсы и потребность хтс в энергии
- •8Подсистема рекуперации вторичных энергоресурсов (вэр)
- •9Энергетическая экспертиза хтс
- •9.1Основные этапы энергетической экспертизы
- •9.1.1Структуризация хтс
- •9.1.2Диагностика хтс
- •9.1.3Структуризация цели
- •9.1.4Структуризация путей достижения цели
- •9.1.5Отбор альтернатив
- •9.1.6Выбор окончательного решения
- •9.1.7Формализация цели
- •9.1.8Заключительный отчет
- •Теплоэнергетические системы промышленных предприятий (тэспп)
- •10Общая характеристика теплоэнергетических систем промышленных предприятий
- •11Основные подсистемы теплоэнергетических систем
- •11.1Подсистема паро- и теплоснабжения
- •11.1.1Система сбора и возврата конденсата.
- •11.2Подсистема водоснабжения
- •11.3Подсистема хладоснабжения
- •11.4Подсистема воздухоснабжения
- •11.4.1Система кондиционирование воздуха производственных помещений.
- •Анализ термодинамической эффективности хтс
- •12Понятие об эксергии
- •13Классификация эксергии
- •14Эксергетический и энергетический кпд
- •14.1Эксергетический баланс
- •14.2Энергетический баланс
- •14.3Форма представления эксергетического баланса
- •14.4Виды эксергетических потерь
- •15Изменение эксергии вещества при протекании химических и физических процессов
- •Термоэкономический анализ
- •16Задачи анализа
- •17Оптимизация проектирования подсистемы рекуперации вэр
- •Энерготехнологическое комбинирование
- •18Постановка задачи
- •19Синтез тепловой схемы
- •20Классификация структур тепловых схем
- •21Методика синтеза тепловой схемы
- •22Модели тепловых схем.
- •23Виды энерготехнологического комбинирования
- •23.1Термохимическая регенерация
- •23.2 Комбинирование химико-технологического и ядерного процессов
- •23.3Тепловое и силовое комбинирование
- •23.4Комбинирование экотехнологических и энергетических процессов
- •23.5Комбинирование экзо- и эндотермических реакций в одном реакционном объеме
- •23.6Комбинирование процессов испарения и конденсации в одном аппарате
- •23.7Комбинирование тепловых потоков в подсистемах разделения многокомпонентных смесей
- •23.8Комбинирование плазмохимической и энергетической установок
- •23.9Комбинированное использование тепловых отходов
- •Системный анализ и синтез эффективных энерготехнологических комплексов нефтехимических производств.
- •24Методические вопросы анализа и синтеза энерготехнологических комплексов
- •24.1Методика эксергетического анализа нефтехимических производств
Энерготехнологическое комбинирование
18Постановка задачи
Современной технологии предъявляются следующие требования:
снижение расходов сырья и энергии на единицу вырабатываемой продукции;
экологизация производства, т.е. снижение химического, механического и теплового загрязнения окружающей среды;
повышение качества продукции;
организация гибкого технологического процесса с оборудованием, способным динамично настраиваться на выпуск новой продукции.
Чтобы удовлетворить этим требованиям, инженер-технолог в своих разработках должен использовать достижения современных фундаментальных наук и взамен дифференцированной структуры производства и потребления сырья и энергии применять интегрированную энерготехнологическую схему.
Промышленная макроструктура, существующая в настоящее время, исторически монофункциональна, т.е. все предприятия разделены по производственному признаку:
Все это делает, в сущности, единую систему громоздкой и создает избыточные потоки сырья и энергии и соответствующие потери при передаче из одного элемента в другой. Поэтому наиболее рационально проектировать такие промышленные системы, в которых энергия, выделяющаяся в одном процессе, тут же утилизируется в другом, а отходы, побочные продукты химического синтеза могут служить исходным сырьем для получения другого продукта.
Тесная увязка энергетических процессов, т.е. процессов производства энергии с технологическими процессами (химическими, металлургическими, стройматериалов и др.)приводит к резкому повышению эффективности используемого топлива: позволяет в 1,5 раза сократить его расход, снизить требования к качеству сырья и сократить производственную цепочку сырье – продукты. Вопросами проектирования таких теплоинтегрированных систем занимается новая прикладная наука – энерготехнология.
Энерготехнология включает системный анализ комбинаций энергетических и технологических процессов с целью получения химических продуктов и энергии за счет использования всех минеральных составляющих сырья и его энергетического потенциала, а также рационального использования первичных и вторичных энергоресурсов. Схемы, реализующие энерготехнологический принцип, кроме технологического оборудования включают сопряженное с ним энергетическое оборудование (котлы-утилизаторы, пароперегреватели, экономайзеры, паровые и газовые турбины, генераторы электрического тока и пр.).
Основная задача энерготехнологического комбинирования заключается в отыскании таких схем, параметров и аппаратурного оформления энергетических и технологических параметров в рамках одного производства, которые обеспечивают, взаимно дополняя друг друга, максимальный экономический эффект и предотвращают вредное воздействие на окружающую среду. Основной признак энерготехнологического комбинирования состоит в оптимальном взаимном влиянии энергетики и технологии. Важным моментом энерготехнологического комбинирования является построение схемы установки. Этот этап проектирования наиболее сложный и в наибольшей степени определяет эффективность производства. Сложность построения энерготехнологической схемы обусловлена в первую очередь необходимостью учета большого числа связей, возникающих при энерготехнологическом комбинировании, прежде всего взаимосвязи показателей производства и потребления энергии и технологических показателей установки. Для этого требуется предварительно провести большую работу по уточнению энергосбережения не только во всех узлах данного производства, но и в схемах сопутствующих производств, выявить потенциалы и выходы ВЭР. Только на основе такой исчерпывающей информации с учетом особенностей технологического процесса можно правильно определить аппаратурное оформление энерготехнологического комплекса, оптимально скомпоновать соответствующее оборудование
Построение энерготехнологического комплекса и его оптимизация производится с привлечением методов математического моделирования, аппарата термодинамического и технико-экономического анализа. Успех оптимизации энерготехнологической схемы зависит от правильного выбора группы определяющих параметров математической модели. Среди оптимизируемых параметров должны быть в первую очередь те, которые определяют одновременно технологическую эффективность установки, потребление и выработку энергии.
Таким образом, совершенствование энергоиспользования в нефтехимической технологии на основе энерготехнологического комбинирования является весьма сложной задачей. Радикальное решение ее возможно путем комплексного анализа технологии и энергетики производственных процессов, позволяющих выявить и обосновать их взаимное влияние в целях обеспечения максимального народнохозяйственного эффекта.
Повышение экономической эффективности нефтехимических производств, прежде всего, связано с совершенствованием теплопотребления. Для химических установок характерно, что капиталовложения в теплообменную аппаратуру составляют около 1/3 общей стоимости оборудования ХТС, а вид теплотехнической связи потока и параметры теплообменника оказывают большое влияние на потребление сырья и энергии. Поэтому энергетическая эффективность действующих и проектируемых систем во многом зависит от правильного выбора тепловой (структурной) схемы ХТС.