
- •Введение
- •Основные принципы энергосберегающей политики в нефтепереработке и нефтехимии.
- •1Совершенствование технологии с целью снижения удельной энергоемкости.
- •1.1Выбор оптимального вида сырья
- •1.2Применение более эффективных катализаторов.
- •1.3Применение более эффективных физико-химических процессов выделения целевых продуктов.
- •1.4Применение комбинирования процессов, установок и производства
- •1.5Применение более совершенных видов оборудования, прогрессивных методов его расчета и условий эксплуатации
- •1.6 Совершенствование химической схемы процесса
- •2Повышение эффективности использования энергоресурсов
- •Химико-технологическая система (хтс)
- •3 Основные элементы хтс
- •4Топология химико-технологических систем
- •Энергокомплекс химико-технологических систем
- •5Структура энергокомплекса хтс
- •6Виды энергии
- •7Энергоресурсы и потребность хтс в энергии
- •8Подсистема рекуперации вторичных энергоресурсов (вэр)
- •9Энергетическая экспертиза хтс
- •9.1Основные этапы энергетической экспертизы
- •9.1.1Структуризация хтс
- •9.1.2Диагностика хтс
- •9.1.3Структуризация цели
- •9.1.4Структуризация путей достижения цели
- •9.1.5Отбор альтернатив
- •9.1.6Выбор окончательного решения
- •9.1.7Формализация цели
- •9.1.8Заключительный отчет
- •Теплоэнергетические системы промышленных предприятий (тэспп)
- •10Общая характеристика теплоэнергетических систем промышленных предприятий
- •11Основные подсистемы теплоэнергетических систем
- •11.1Подсистема паро- и теплоснабжения
- •11.1.1Система сбора и возврата конденсата.
- •11.2Подсистема водоснабжения
- •11.3Подсистема хладоснабжения
- •11.4Подсистема воздухоснабжения
- •11.4.1Система кондиционирование воздуха производственных помещений.
- •Анализ термодинамической эффективности хтс
- •12Понятие об эксергии
- •13Классификация эксергии
- •14Эксергетический и энергетический кпд
- •14.1Эксергетический баланс
- •14.2Энергетический баланс
- •14.3Форма представления эксергетического баланса
- •14.4Виды эксергетических потерь
- •15Изменение эксергии вещества при протекании химических и физических процессов
- •Термоэкономический анализ
- •16Задачи анализа
- •17Оптимизация проектирования подсистемы рекуперации вэр
- •Энерготехнологическое комбинирование
- •18Постановка задачи
- •19Синтез тепловой схемы
- •20Классификация структур тепловых схем
- •21Методика синтеза тепловой схемы
- •22Модели тепловых схем.
- •23Виды энерготехнологического комбинирования
- •23.1Термохимическая регенерация
- •23.2 Комбинирование химико-технологического и ядерного процессов
- •23.3Тепловое и силовое комбинирование
- •23.4Комбинирование экотехнологических и энергетических процессов
- •23.5Комбинирование экзо- и эндотермических реакций в одном реакционном объеме
- •23.6Комбинирование процессов испарения и конденсации в одном аппарате
- •23.7Комбинирование тепловых потоков в подсистемах разделения многокомпонентных смесей
- •23.8Комбинирование плазмохимической и энергетической установок
- •23.9Комбинированное использование тепловых отходов
- •Системный анализ и синтез эффективных энерготехнологических комплексов нефтехимических производств.
- •24Методические вопросы анализа и синтеза энерготехнологических комплексов
- •24.1Методика эксергетического анализа нефтехимических производств
17Оптимизация проектирования подсистемы рекуперации вэр
В общем случае последовательность решения задачи потребления энергии ХТС предусмаривает три этапа:
оптимизацию технологических параметров (температура, давление, расход) и конструктивных (поверхность F, высота H, диаметр D, количество труб n и пр.) параметров элементов системы;
оптимизацию структуры ХТС (для использования рекуперативных теплообменников с наибольшей эффективностью с целью замены теплоносителей в элементах теплообмена, т.е. исключения первичных энергоресурсов за счет применения ВЭР);
введение подсистем рекуперации вторичной энергии (котлов-утилизаторов, паротурбинных установок, тепловых насосов, термосифонов, тепловых труб и пр.).
Наиболее эффективными с точки зрения энергопотребления будут ХТС, в которых все процессы обратимы. Оптимизацию таких систем можно проводить, используя термодинамические критерии. Однако изменение цен на сырье, оборудование и продукты может привести к тому, что термодинамически совершенная система окажется экономически невыгодной. Компромиссное решение обеспечивает термоэкономический метод оптимизации энергопотребления в ХТС. Основой метода является минимизация стоимости единицы эксергии выходных потоков, поэтому все потоки выражают через стоимость их эксергии. Этот прием позволяет сопоставить процессы преобразования энергии, т.е. найти потери эксергии и оценить стоимость технических мероприятий, направленных на их уменьшение. В общем виде термоэкономический критерий оптимизации можно записать следующими образом:
, (6.6)
где С – стоимость единицы эксергии продукции; Еi – эксергия потребляемых ХТС потоков сырья и энергии; Сei – стоимость единицы эксергии соответствующих потоков сырья и энергии; Еpk – эксергия выходных потоков продукции; Кj – капитальные затраты на подсистему с учетом нормативного коэффициента использования капиталовложений; v – совокупность оптимизирующих параметров, на множестве которых ищется минимум.
Существуют два варианта реализации термоэкономического принципа:
использование термоэкономического критерия без исследования преобразования эксергии внутри ХТС на основе сравнения различных ее вариантов, увязанных материальными и энергетическими балансами при расчете значений эксергии лишь для входных и выходных потоков системы;
использование термоэкономического критерия с учетом преобразования эксергии внутри ХТС для ее различных вариантов на основе исследования процесса образования стоимости внутренних и выходных потоков системы.
Оба варианта дают идентичные результаты, однако первый удобен для оптимизации системы, а второй позволяет выполнить анализ и выявить причины возрастания стоимости потоков. В этом случае возникает задача определения стоимостей единиц эксергии промежуточных потоков на основе декомпозиции термоэкономической модели.
Энерготехнологическая установка описывается системой уравнений:
(6.7)
т.е. все выходящие потоки эксергии являются функцией эксергии входящих в элемент потоков и оптимизирующих переменных в нем. Каждому технологическому потоку соответствует стоимость переносимой им единицы эксергии. Для полученной таким образом модели решается задача минимизации термоэкономических затрат, так как минимум энергопотребления может быть определен лишь при фиксированных значениях выходных переменных задачи оптимизации (производительность по конечному продукту). Поскольку функция термоэкономических затрат является пологой, оптимум достигается в точке, где выполняется условие
(6.8)
Декомпозируют термоэкономическую модель и записывают новую целевую функцию (Лагранжа):
, (6.9)
где L, I, J – число входных, промежуточных и выходных потоков эксергии.
Минимум термоэкономических затрат, стоимости единиц эксергии и значение оптимизирующих переменных определяют, решая систему уравнений, полученных дифференцированием формулы Лагранжа по величинам оптимизирующих переменных и эксергии входных и промежуточных потоков:
где М – общее число оптимизирующих переменных; S – суммарное число входных и промежуточных потоков эксергии.
Из первого уравнения определяют стоимость единицы эксергии всех потоков, а из второго – значение оптимизирующих переменных и эксергетический баланс.
Более упрощенный подход основан на термоэкономическом анализе ХТС и определении лишь стоимостей единиц эксергии потоков. Для этого внутри ХТС для каждого конкретного мероприятия по экономии энергии определяют стоимости единиц эксергии, выявляют наименее эффективные элементы, проводят их локальную оптимизацию и эту процедуру повторяют до тех пор, пока не получат минимум термоэкономических затрат.