
- •Введение
- •Основные принципы энергосберегающей политики в нефтепереработке и нефтехимии.
- •1Совершенствование технологии с целью снижения удельной энергоемкости.
- •1.1Выбор оптимального вида сырья
- •1.2Применение более эффективных катализаторов.
- •1.3Применение более эффективных физико-химических процессов выделения целевых продуктов.
- •1.4Применение комбинирования процессов, установок и производства
- •1.5Применение более совершенных видов оборудования, прогрессивных методов его расчета и условий эксплуатации
- •1.6 Совершенствование химической схемы процесса
- •2Повышение эффективности использования энергоресурсов
- •Химико-технологическая система (хтс)
- •3 Основные элементы хтс
- •4Топология химико-технологических систем
- •Энергокомплекс химико-технологических систем
- •5Структура энергокомплекса хтс
- •6Виды энергии
- •7Энергоресурсы и потребность хтс в энергии
- •8Подсистема рекуперации вторичных энергоресурсов (вэр)
- •9Энергетическая экспертиза хтс
- •9.1Основные этапы энергетической экспертизы
- •9.1.1Структуризация хтс
- •9.1.2Диагностика хтс
- •9.1.3Структуризация цели
- •9.1.4Структуризация путей достижения цели
- •9.1.5Отбор альтернатив
- •9.1.6Выбор окончательного решения
- •9.1.7Формализация цели
- •9.1.8Заключительный отчет
- •Теплоэнергетические системы промышленных предприятий (тэспп)
- •10Общая характеристика теплоэнергетических систем промышленных предприятий
- •11Основные подсистемы теплоэнергетических систем
- •11.1Подсистема паро- и теплоснабжения
- •11.1.1Система сбора и возврата конденсата.
- •11.2Подсистема водоснабжения
- •11.3Подсистема хладоснабжения
- •11.4Подсистема воздухоснабжения
- •11.4.1Система кондиционирование воздуха производственных помещений.
- •Анализ термодинамической эффективности хтс
- •12Понятие об эксергии
- •13Классификация эксергии
- •14Эксергетический и энергетический кпд
- •14.1Эксергетический баланс
- •14.2Энергетический баланс
- •14.3Форма представления эксергетического баланса
- •14.4Виды эксергетических потерь
- •15Изменение эксергии вещества при протекании химических и физических процессов
- •Термоэкономический анализ
- •16Задачи анализа
- •17Оптимизация проектирования подсистемы рекуперации вэр
- •Энерготехнологическое комбинирование
- •18Постановка задачи
- •19Синтез тепловой схемы
- •20Классификация структур тепловых схем
- •21Методика синтеза тепловой схемы
- •22Модели тепловых схем.
- •23Виды энерготехнологического комбинирования
- •23.1Термохимическая регенерация
- •23.2 Комбинирование химико-технологического и ядерного процессов
- •23.3Тепловое и силовое комбинирование
- •23.4Комбинирование экотехнологических и энергетических процессов
- •23.5Комбинирование экзо- и эндотермических реакций в одном реакционном объеме
- •23.6Комбинирование процессов испарения и конденсации в одном аппарате
- •23.7Комбинирование тепловых потоков в подсистемах разделения многокомпонентных смесей
- •23.8Комбинирование плазмохимической и энергетической установок
- •23.9Комбинированное использование тепловых отходов
- •Системный анализ и синтез эффективных энерготехнологических комплексов нефтехимических производств.
- •24Методические вопросы анализа и синтеза энерготехнологических комплексов
- •24.1Методика эксергетического анализа нефтехимических производств
Анализ термодинамической эффективности хтс
12Понятие об эксергии
В химической технологии большое значение приобретают комплексные (комбинированные) процессы, в результате которых получается несколько продуктов. Кроме того, за счет тепла реакций и реакционных потоков генерируются различные энергоносители (пар, горячая вода и др.), используемые для технологических целей или выработки электроэнергии.
Применение соответствующего метода оценки КПД комплексных процессов имеет большое техническое значение, поскольку результаты оценки в большинстве случаев являются основой для раскрытия важных технико-экономических проблем и выбора технического решения. Поэтому при определении предельной энергетической эффективности синтезируемой ХТС следует учитывать не только количество энергии материальных потоков, но и качество.
При протекании технологических процессов одни виды энергии превращаются в другие. С этой точки зрения все материальные преобразования в ХТС "РЕАГЕНТЫ → ПРОДУКТЫ" следует рассматривать как следствие энергетических превращений.
Однако разные формы энергии обладают неодинаковой способностью преобразовываться в работу и другие формы энергии. Поэтому используемые в технологии формы энергии по степени превратимости, т.е. полноте потребления делят на три вида:
неограниченно преобразуемые (кинетическая, потенциальная, электрическая, магнитная и пр.);
ограниченно преобразуемые (химическая, внутренняя и тепловая при Т≠Т0);
непреобразуемые (тепловая при Т=Т0, т.е. при температуре окружающей среды, а также работа по преодолению атмосферного давления).
Окружающей средой считают атмосферу, гидросферу (воду рек и морей), литосферу (землю). Окружающая среда является ближайшей к технологической установке частью природы, выступающей как источники даровых тепла и веществ. Во всех превращениях, в которых участвуют ограниченно преобразуемые виды энергии, в окружающую среду энергия переходит в виде тепла, причем параметры окружающей среды не изменяются. Практическая пригодность тепла окружающей среды равна нулю.
Поскольку разные системы по-разному потребляют подводимую энергию, важно знать качественную характеристику подводимой энергии и подобрать именно тот вид, который обеспечит наибольшую полноту потребления с минимальными потерями.
Каждую форму энергии можно представить как сумму неограниченно преобразуемой и непреобразуемой энергии. Первую З.Рант назвал эксергией, а вторую анергией (рис. 5.1). Все жизненно необходимые процессы отопления, охлаждения, получения вещества, разделения сложных физических и химических систем требуют для своего проведения не просто энергии, а эксергии. Задача производства энергии заключается в преобразовании первичной энергии для получения содержащейся в ней эксергии в виде полезной работы или электроэнергии. Именно этот продукт энергетики и потребляется в технологическом процессе. При этом эксергия превращается в анергию. Таким образом, для реализации технологического процесса требуется только эксергия, которая считается мерой работоспособности энергии.
|
Рис. 5.1. Эксергия и анергия потока перегретого пара
|
Итак, эксергией материи является максимальная способность к совершению работы в таком процессе, конечное состояние которого определяется условиями термодинамического равновесия с окружающей средой.
Традиционный энергетический баланс, который обычно используют для оценки энергетической эффективности системы, не исключает ошибочных выводов. Так, на рис. 5.2 показана зависимость коэффициента ценности тепла от температуры Т, слабо или сильно отличающейся от температуры окружающей среды Т0. Видно, что в области температур, где 0,67<Т/Т0<2, коэффициент ценности тепла меньше 0,5. В результате появляется ошибочное заключение, что ценность низкопотенциального тепла существенно выше, чем ценность высокопотенциального (Т/Т0>2).
|
Рис. 5.2. Коэффициент ценности тепла.
|
Различие между энергией и эксергией показано в табл. 5.1.
Таблица 5.1.
Сопоставление свойств энергии и эксергии
Энергия системы |
Эксергия системы |
Зависит только от параметров системы и не зависит от параметров окружающей среды. |
Зависит от параметров системы и окружающей среды. |
Всегда имеет величину, отличную от нуля, и равна в соответствии с уравнением Эйнштейна mс2. |
Может иметь величину, равную нулю (в нулевом состоянии при полном равновесии с окружающей средой). |
Подчиняется закону сохранения в любых процессах и уничтожаться не может. |
Подчиняется закону сохранения только при обратимых процессах, в реальных необратимых процессах частично или полностью уничтожается. |
Превращение одних форм в другие ограничено по условиям второго начала термодинамики для всех процессов, в т.ч. и обратимых. |
Превратимость одних форм в другие не ограничена по условиям второго начала термодинамики для обратимых процессов. |
Как будет видно в дальнейшем, значения энергетического и эксергетического КПД также не совпадают.