Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_k_biletam_po_YeNOIT.doc
Скачиваний:
7
Добавлен:
05.08.2019
Размер:
533.5 Кб
Скачать

3. Инновации.

Инновация (англ. innovation) — это внедренное новшество, обеспечивающее качественный рост эффективности процессов или продукции, востребованное рынком. Является конечным результатом интеллектуальной деятельности человека, его фантазии, творческого процесса, открытий, изобретений и рационализации. Примером инновации является выведение на рынок продукции (товаров и услуг) с новыми потребительскими свойствами или качественным повышением эффективности производственных систем.

Инновация — это не всякое новшество или нововведение, а только такое, которое серьезно повышает эффективность действующей системы.

Более общее это понятие может применяться также и к творческой идее, которая была осуществлена.

Виды инноваций.

  • Технологические — получение нового или эффективного производства имеющегося продукта, изделия, техники, новые или усовершенствованные технологические процессы. Инновации в области организации и управления производством не относятся к технологическим.

  • Социальные (процессные) — процесс обновления сфер жизни человека в реорганизации социума (педагогика, система управления, благотворительность, обслуживание, организация процесса).

  • Продуктовые.

  • Организационные.

  • Маркетинговые.

Инновационные технологии.

Инновационные технологии — наборы методов и средств, поддерживающих этапы реализации нововведения. Различают виды инновационных технологий:

  • внедрение;

  • тренинг (подготовка кадров и инкубация малых предприятий);

  • консалтинг;

  • трансферт;

  • инжиниринг.

Жизненный цикл нововведений.

ЖИЗНЕННЫЙ ЦИКЛ НОВОВВЕДЕНИЯ, новой техники — период времени от зарождения новой идеи, ее практического воплощения в новых изделиях до морального старения этих изделий и их снятия с производства, значительного уменьшения их практического применения. Жизненный цикл нововведений принято делить на отдельные стадии: а) зарождение идеи, появления изобретения; б) научные исследования и разработки, экспериментальная проверка возможности воплощения замысла; в) появление нового изделия на рынке, формирование спроса (рост); г) широкое изготовление новых изделий (зрелость); д) насыщение рынка; е) затухание продажи и вытеснение изделия новым, более совершенным. Иногда жизненный цикл нововведения характеризуется формулой: "наука—техника—производство—применение".

4. Техносфера.

Техносфера - совокупность элементов среды в пределах географической оболочки Земли, созданных из природных веществ трудом и сознательной волей человека и не имеющих аналогов в девственной природе. Техносфера является совокупностью абиотических, биотических и социально-экономических факторов.

Особенности развития технологий.??

Обновление технологий и подъёмы в экономике. ????

5. Представления о материи, движении, пространстве и времени.

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. Движение – это способ существования материи, ее всеобщий атрибут. В самом общем виде под движением понимают всякое изменение. Движение – это и обмен веществ в клетках организма, и взаимное превращение элементарных частиц, и расширение физического мира, и обмен деятельностью между людьми, и мышление. Основными свойствами движения являются единство изменчивости и устойчивости, прерывности и непрерывности, абсолютности и относительности. Пространство – это философская категория, которая характеризует протяженность, структурность, сосуществование и взаимодействие элементов во всех материальных системах. Время – это философская категория, выражающая длительность существования различных форм бытия, последовательность смены состояний в изменении и развитии материальных систем. Понятие пространства имеет смысл лишь постольку, поскольку сама материя дифференцирована, структурирована. Если бы мир не имел сложной структуры, если бы он не расчленял на предметы, которые в свою очередь не членились бы на элементы между собой, то понятие пространства не имело бы смысла. Также и понятие времени имеет смысл постольку, поскольку мир находится в состоянии движения и развития. В истории философии и науки сформировались две основные концепции пространства и времени: 1) субстанциальная и 2) реляционная.

Понятие о структурных уровнях организации материи.

Мегамир, макромир и микромир.

Структурные уровни материи образованы из определённого множества объектов какого- либо класса и характеризуется особым типом взаимодействия между составляющими их элементами. Критерием для выделения различных структурных уровней служат следующие признаки: Пространственно- временные масштабы, совокупность важнейших свойств, специфические законы движения, степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира, некоторые другие признаки.

Микро-, макро- и мегамиры. Известные в настоящее время структурные уровни матери могут быть выделены по вышеперечисленным признакам в следующие области.

1. Микромир. Сюда относятся: частицы элементарные и ядра атомов- область порядка 10-15 см, атомы и молекулы 10-8 – 10-7 см.

2. Макромир: макроскопические тела 10-6 - 10-7 см

3. Мегамир: космические системы и неограниченные масштабы до 1028 см.

Деление материи на структурные уровни носит относительный характер. В доступных пространственно- временных масштабах структурность материи проявляется в её системной организации, существовании в виде множества иерархически взаимодействующих систем, начиная от элементарных частиц и кончая Метагалактикой.

6. Фундаментальные взаимодействия.

Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

  • гравитационного

  • электромагнитного

  • сильного

  • слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

7. Механика как основа многих технологий.

Механика , наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Часть М., непосредственно связанную с техникой, составляют многочисленные общетехнические и специальные дисциплины, такие, как гидравлика, сопротивление материалов, кинематика механизмов, динамика машин и механизмов, теория гироскопических устройств, внешняя баллистика, динамика ракет, теория движения различных наземных, морских и воздушных транспортных средств, теория регулирования и управления движением различных объектов, строительная М., ряд разделов технологии и многое др. Все эти дисциплины пользуются уравнениями и методами теоретической М. Т. о., М. является одной из научных основ многих областей современной техники.

Основные законы и понятия механики.

Основными кинематическими мерами движения в М. являются: для точки — её скорость и ускорение, а для твёрдого тела — скорость и ускорение поступательного движения и угловая скорость и угловое ускорение вращательного движения тела. Кинематическое состояние деформируемого твёрдого тела характеризуется относительными удлинениями и сдвигами его частиц; совокупность этих величин определяет т. н. тензор деформаций. Для жидкостей и газов кинематическое состояние характеризуется тензором скоростей деформаций; кроме того, при изучении поля скоростей движущейся жидкости пользуются понятием о вихре, характеризующем вращение частицы.

Основной мерой механического взаимодействия материальных тел в М. является сила. Одновременно в М. широко пользуются понятием момента силы относительно точки и относительно оси. В М. сплошной среды силы задаются их поверхностным или объёмным распределением, т. е. отношением величины силы к площади поверхности (для поверхностных сил) или к объёму (для массовых сил), на которые соответствующая сила действует. Возникающие в сплошной среде внутренние напряжения характеризуются в каждой точке среды касательными и нормальными напряжениями, совокупность которых представляет собой величину, называемую тензором напряжений. Среднее арифметическое трёх нормальных напряжений, взятое с обратным знаком, определяет величину, называемую давлением в данной точке среды.

Помимо действующих сил, движение тела зависит от степени его инертности, т. е. от того, насколько быстро оно изменяет своё движение под действием приложенных сил. Для материальной точки мерой инертности является величина, называемая массой точки. Инертность материального тела зависит не только от его общей массы, но и от распределения масс в теле, которое характеризуется положением центра масс и величинами, называемыми осевыми и центробежными моментами инерции; совокупность этих величин определяет т. н. тензор инерции. Инертность жидкости или газа характеризуется их плотностью.

В основе М. лежат законы Ньютона. Первые два справедливы по отношению к т. н. инерциальной системе отсчёта. Второй закон даёт основные уравнения для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются ещё законы, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таков Гука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, которым подчиняются др. среды, см. Пластичности теория и Реология.

Важное значение для решения задач М. имеют понятия о динамических мерах движения, которыми являются количество движения, момент количества движения (или кинетический момент) и кинетическая энергия, и о мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают теоремы об изменении количества движения, момента количества движения и кинетической энергии, называемые общими теоремами динамики. Эти теоремы и вытекающие из них законы сохранения количества движения, момента количества движения и механической энергии выражают свойства движения любой системы материальных точек и сплошной среды.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]