
- •(Краткая история развития естествознания.)
- •Фундаментальные и прикладные проблемы естествознания.
- •2. Естествознание- основа современных наукоёмких технологий. Технологии (понятие,история, классификация). Научно-технические революции. Жизненный цикл технологий.
- •История
- •Среднее машиностроение
- •Жизненный цикл технологии
- •3.Инновации. Виды инноваций. Инновационные технологии. Жизненный цикл нововведений.
- •4. Техносфера. Особенности развития технологий. Обновление технологий и подъемы в экономике.
- •5. Представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, макромир и микромир.
- •6.Фундаментальные взаимодействия.
- •7. Механика как основа многих технологий. Основные законы и понятия механики.
- •8. Законы сохранения количества движения (импульса), энергии и момента количества движения,их примение в технике и технологиях. Принцип реактивного движения.
- •9. Применение фазовых переходов в технике и технологиях.
- •10.Элементная база компьютера. Развитие твердотельной электроники. Технологии микроэлектроники. Развитие нанотехнологии.
- •11.Основыне представления современной химии. Эволюционная химия. Синтез новых материалов и применение новых материалов в технике и технологиях.
- •12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И.Менделеева. Трансурановые элементы и их применение в технике и технологиях.
- •13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.И их применение в технике и технологиях.
- •14. Естественно-научные основы лазерных технологий. Особенности лазерного излучения. Применение лазеров в технике и технологиях.
- •15. Современные представления об эволюции Вселенной, галактик, звезд и звездных систем.
- •Галактики и их классификация. Наша галактика.
- •16. Солнечная система. Законы небесной механики – законы Кеплера. Солнечно-земные связи. Учение Чижевского. Ракетно-космические технологии.
- •А. Л. Чижевский
- •17. Гравитационное взаимодействие тел. Закон всемирного тяготения Ньютона. Космические скорости.
- •18.Явления самоорганизации в живой и неживой природе.Синергетика и её практические применение в технике и технологиях.
- •19. Основные понятия термодинамики. Первое и второе начало термодинамики.
- •20.Синтез органических и неорганических соединений. Биосинтез. Применение синтезированных соединений в технике и технологиях.
- •Классификация
- •Классификация
- •Биосинтез
- •Техническое использование переменного тока.
- •22. Электрический ток и магнитное поле и их примение в технике и технологиях. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •Закон фарадея и принцип действия электрических трансформаторов.
- •23. Геометрическая оптика и волновая теория света. Дисперсия, явления интерференции и дифракции, поляризация и их примениени в технике и технологиях.
- •Волновая теория света, явления интерференции и дифракции.
- •Практическое значение
- •24.Металлургические технологии.
- •История
- •Добывающая металлургия
- •25.Классификация двигателей и их принципы работы.
- •Первичные двигатели
- •Дизельные
- •Газовые
- •Пневмодвигатели и гидромашины
- •Тепловые двигатели по устройству
- •26. Информационные технологии. Суперкомпьютер. Нейронные сети. Технологические возможности реализации высокой информационной плотности.
- •Основные черты современных ит:
- •Программное обеспечение суперкомпьютеров
- •Технологические возможности реализации высокой информационной плотности
- •27. Энергетическое машиностроение. Станкостроение .Робототехника.
- •Системы управления
- •Наночастицы
- •Наноматериалы
- •Наноэлектроника в России
- •29.Машиностроительные технологии.
- •Среднее машиностроение
- •30. Основные научные достижения в биологии и генетики. Роль днк и рнк в системе управления генетической информацией. Наследственность и изменчивость.
- •Наследственность и изменчивость.
- •31.Ген. Геном. Генотип. Генная инженерия .Клонирование.
- •Экономическое значение
- •32. Биотехнологии- прикладное направление современной технологии. Применение биотехнологий в различных отраслях народного хозяйства.
- •33. Технологии строительства.
- •Объекты строительства — это:
- •34.Развитие химических технологий.Химические процессы. Виды катализа. Применение катализа в химических технологиях.
- •Основные процессы
- •Основные принципы катализа
- •Носитель катализатора
- •35.Транспортные технологии. Экономичный автомобиль. Виды транспорта (авиа, автомобильный, железнодорожный, речной, мосркой, трубопроводный) и их характеристика.
- •36.Научные методы исследования. Принципы познания.
- •37.Сознание и интеллект.Человек и эмоции. Исследования человеческого мозга и возможностей человека.
- •Абляции
- •Транскраниальная магнитная стимуляция
- •Электрофизиология
- •Электрическая стимуляция
- •Другие методики
23. Геометрическая оптика и волновая теория света. Дисперсия, явления интерференции и дифракции, поляризация и их примениени в технике и технологиях.
Закон прямолинейного распространения света. Образование тени.
Прямолинейность световых лучей означает, что форма тени предмета при его освещении точечным источником соответствует геометрической центральной проекции контура предмета (с центром в источнике). Этот закон имеет глубокий смысл, ибо само понятие прямой линии сформировалось главным образом на основе оптических наблюдений.
При освещении предмета протяженным источником света края тени оказываются размытыми. В переходную область между полной тенью и светом (в область полутени) попадают лучи не от всех точек источника.
Затмение Луны
Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени, может служить затенение одних планет другими, например затмение Луны, когда Луна попадает в тень Земли. Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько фаз: Частные фазы лунного затмения.
Представление о прямолинейных световых лучах используется в инструментальной оптике для конструирования и расчета оптических приборов. Расходящийся пучок лучей, выходящих из одной точки (гомоцентрический пучок лучей), с помощью оптической системы (линзы, объектива, вогнутого зеркала) можно превратить в сходящийся. Точка пересечения этих сходящихся лучей будет действительным изображением соответствующей точки источника (предмета). Изображение протяженного предмета, формируемое оптической системой, представляет собой центральную проекцию предмета. Центр проекции находится в центре входного зрачка оптической системы. Для фотообъектива центр проекции обычно совпадает с центром диафрагмы объектива.
Физическая реализация геометрического проектирования с помощью световых лучей, т.е. формирование оптических изображений, широко используется в технике, в частности, при создании печатных микросхем.
Изготовление печатных плат
Изображенные на фотопленке элементы микросхемы проецируются на кристалл кремния, где получается подобное уменьшенное (с помощью системы линз) изображение микросхемы. Специальная обработка позволяет превратить это изображение в печатную микросхему.
Волновая теория света, явления интерференции и дифракции.
Основоположником волновой теории является Х.Гюйгенс. Процесс распространения света он представлял не как поступательное движение. А как последовательный процесс передачи взаимодействия между корпускулами. Его сторонники считали, что свет распространяется в особой среде – «эфире», заполняющем все мировое пространство и свободно проникающем во все тела. Световое возбуждение от источника света передается посредством эфира во все стороны. Так возникли первые волновые представления о природе света. В развитии волновой теории света весьма важную роль сыграл принцип, сформулированный Гюйгенсом, а затем развитый французским физиком О.Френелем. Принцип Гюгенса-Френеля состоит в том, что каждая точка, до которой дошло световое возбуждение в свою очередь становится источником вторичных волн и передает их во все стороны соседним точкам. Наиболее наглядно волновые свойства света проявляются в явлениях интерференции и дифракции.
Интерференция света заключается в том, что при взаимном наложении двух волн происходит усиление или ослабление колебаний. Принцип интерференции впервые сформулировал в 1801 г. английский ученый Томас Юнг. Он поставил простой опыт: на экране кончиком булавки прокалывались два близко расположенных отверстия, которые освещались солнечным светом из небольшого отверстия в зашторенном окне. За экраном наблюдалась вместо двух ярких точек серия чередующихся темных и светлых колец, представляющая собой интерференционную картину. Необходимым условием интерференции является когерентность волн – согласованное протекание колебательных или волновых процессов.
Отклонение света от прямолинейного распространения называется дифракцией. На дифракции основаны многие оптические приборы. В частности, дифракция рентгеновских лучей используется во многих аппаратах различного назначения.
Поляриза́ция волн — явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.[1]
Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды, всегда перпендикулярным к волновому вектору. Так что в трёхмерном пространстве имеется ещё одна степень свободы — вращение вокруг волнового вектора.
Причиной возникновения поляризации волн может быть:
несимметричная генерация волн в источнике возмущения;
анизотропность среды распространения волн;
преломление и отражение на границе двух сред.
Зависимость мгновенных потенциалов при круговой поляризации
Основными являются два вида поляризации:
линейная — колебания возмущения происходит в какой-то одной плоскости. В таком случае говорят о «плоско-поляризованной волне»;
круговая — конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой.
На основе этих двух или только круговой можно сформировать и другие, более сложные виды поляризации. Например, эллиптическая. В общем случае, круговая поляризация — вещь теоретическая, на практике же говорят об эллиптической поляризации — с левым или правым направлением вращения.