
- •(Краткая история развития естествознания.)
- •Фундаментальные и прикладные проблемы естествознания.
- •2. Естествознание- основа современных наукоёмких технологий. Технологии (понятие,история, классификация). Научно-технические революции. Жизненный цикл технологий.
- •История
- •Среднее машиностроение
- •Жизненный цикл технологии
- •3.Инновации. Виды инноваций. Инновационные технологии. Жизненный цикл нововведений.
- •4. Техносфера. Особенности развития технологий. Обновление технологий и подъемы в экономике.
- •5. Представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, макромир и микромир.
- •6.Фундаментальные взаимодействия.
- •7. Механика как основа многих технологий. Основные законы и понятия механики.
- •8. Законы сохранения количества движения (импульса), энергии и момента количества движения,их примение в технике и технологиях. Принцип реактивного движения.
- •9. Применение фазовых переходов в технике и технологиях.
- •10.Элементная база компьютера. Развитие твердотельной электроники. Технологии микроэлектроники. Развитие нанотехнологии.
- •11.Основыне представления современной химии. Эволюционная химия. Синтез новых материалов и применение новых материалов в технике и технологиях.
- •12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И.Менделеева. Трансурановые элементы и их применение в технике и технологиях.
- •13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.И их применение в технике и технологиях.
- •14. Естественно-научные основы лазерных технологий. Особенности лазерного излучения. Применение лазеров в технике и технологиях.
- •15. Современные представления об эволюции Вселенной, галактик, звезд и звездных систем.
- •Галактики и их классификация. Наша галактика.
- •16. Солнечная система. Законы небесной механики – законы Кеплера. Солнечно-земные связи. Учение Чижевского. Ракетно-космические технологии.
- •А. Л. Чижевский
- •17. Гравитационное взаимодействие тел. Закон всемирного тяготения Ньютона. Космические скорости.
- •18.Явления самоорганизации в живой и неживой природе.Синергетика и её практические применение в технике и технологиях.
- •19. Основные понятия термодинамики. Первое и второе начало термодинамики.
- •20.Синтез органических и неорганических соединений. Биосинтез. Применение синтезированных соединений в технике и технологиях.
- •Классификация
- •Классификация
- •Биосинтез
- •Техническое использование переменного тока.
- •22. Электрический ток и магнитное поле и их примение в технике и технологиях. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •Закон фарадея и принцип действия электрических трансформаторов.
- •23. Геометрическая оптика и волновая теория света. Дисперсия, явления интерференции и дифракции, поляризация и их примениени в технике и технологиях.
- •Волновая теория света, явления интерференции и дифракции.
- •Практическое значение
- •24.Металлургические технологии.
- •История
- •Добывающая металлургия
- •25.Классификация двигателей и их принципы работы.
- •Первичные двигатели
- •Дизельные
- •Газовые
- •Пневмодвигатели и гидромашины
- •Тепловые двигатели по устройству
- •26. Информационные технологии. Суперкомпьютер. Нейронные сети. Технологические возможности реализации высокой информационной плотности.
- •Основные черты современных ит:
- •Программное обеспечение суперкомпьютеров
- •Технологические возможности реализации высокой информационной плотности
- •27. Энергетическое машиностроение. Станкостроение .Робототехника.
- •Системы управления
- •Наночастицы
- •Наноматериалы
- •Наноэлектроника в России
- •29.Машиностроительные технологии.
- •Среднее машиностроение
- •30. Основные научные достижения в биологии и генетики. Роль днк и рнк в системе управления генетической информацией. Наследственность и изменчивость.
- •Наследственность и изменчивость.
- •31.Ген. Геном. Генотип. Генная инженерия .Клонирование.
- •Экономическое значение
- •32. Биотехнологии- прикладное направление современной технологии. Применение биотехнологий в различных отраслях народного хозяйства.
- •33. Технологии строительства.
- •Объекты строительства — это:
- •34.Развитие химических технологий.Химические процессы. Виды катализа. Применение катализа в химических технологиях.
- •Основные процессы
- •Основные принципы катализа
- •Носитель катализатора
- •35.Транспортные технологии. Экономичный автомобиль. Виды транспорта (авиа, автомобильный, железнодорожный, речной, мосркой, трубопроводный) и их характеристика.
- •36.Научные методы исследования. Принципы познания.
- •37.Сознание и интеллект.Человек и эмоции. Исследования человеческого мозга и возможностей человека.
- •Абляции
- •Транскраниальная магнитная стимуляция
- •Электрофизиология
- •Электрическая стимуляция
- •Другие методики
11.Основыне представления современной химии. Эволюционная химия. Синтез новых материалов и применение новых материалов в технике и технологиях.
Атом (др.-греч. ἄτομος — неделимый) — наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и электрически нейтральных нейтронов, а окружающее его облако состоит из отрицательно заряженных электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.
Молекула (новолатинское molecula, уменьшительное от лат. moles — масса) — наименьшая частица вещества, несущая его химические свойства.
Молекула состоит из двух или более атомов, характеризуется количеством входящих в неё атомных ядер и электронов, а также определённой структурой
Элемент (лат. elementum — «стихия») — самостоятельная часть, являющаяся основой чего-либо, например системы или множества.
Вещество́ — форма материи, в отличие от поля, обладающая массой покоя. Вещество состоит из частиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе — атомы, молекулы, кристаллы и т. д.
Катион — положительно заряженный ион. Характеризуется величиной положительного электрического заряда: например, NH4+ — однозарядный катион, Ca2+ — двузарядный катион. В электрическом поле катионы перемещаются к отрицательному электроду — катоду.
Анион — отрицательно заряженный ион. Характеризуется величиной отрицательного электрического заряда; например, Cl− — однозарядный анион, а SO42− — двузарядный анион. В электрическом поле анионы перемещаются к положительному электроду — аноду. Анионы имеются в растворах большинства солей, кислот и оснований, а также в кристаллических решетках соединений с ионной связью и в расплавах.
Аллотропия (от др.-греч. αλλος — «другой», τροπος — «поворот, свойство») — существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам: так называемых аллотропических модификаций или аллотропических форм.
Аллотропия может быть результатом образования молекул с различным числом атомов (например, атомарный кислород O, молекулярный кислород O2 и озон O3) или образования различных кристаллических форм (например, графит и алмаз); в этом случае аллотропия — частный случай полиморфизма
Полиморфизм кристаллов — в физике, минералогии, химии существование кристаллических веществ с одинаковым составом, но разной структурой.
В основе эволюционной химии лежат процессы биокатализа, ферментологии; ориентирована она главным образом на исследование молекулярного уровня живого, что основой живого является биокатализ, т.е. присутствие различных природных веществ в химической реакции, способных управлять ею, замедляя или ускоряя ее протекание. Эти катализаторы в живых системах определены самой природой, что и служит идеалом для многих химиков. В основе эволюционной химии принцип использования таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т. е. к самоорганизации химических систем.
В эволюционной химии существенное место отводится проблеме «самоорганизации» систем. Теория самоорганизации «отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности в системной упорядоченности, или материальной организации». В сущности, речь идет об использовании химического опыта живой природы. Это своеобразная биологизация химии. Химический реактор предстает как некое подобие живой системы, для которой характерны саморазвитие и определенные черты поведения. Так появилась эволюционная химия как высший уровень развития химического знания.
В последние десятилетия активизировались исследования на стыке смежных отраслей естествознания – химии металлоорганических и бионеорганических соединений, химии твердого тела, биогеохимии и др. Неорганические элементы и соединения, последнего времени, играют важную роль в живых системах. Одно из важных достижений – синтез соединений, способных избирательно взаимодействовать с теми молекулами, которые долгое время считались слишком инертными для химических превращений, но представляли и представляют практический интерес. Например, насыщенные углеводороды относительно инертны, не содержат двойных или тройных углерод-углеродных связей. Недавно синтезированы соединения родия и иридия, содержащие фосфины (PR3), или карбинилы, и другие соединения, которые способны расщеплять связи С–Н в метане и циклопропане. При сочетании такой важной реакции синтеза с другими видами превращений можно наладить массовое производство насыщенных углеводородов – ценнейшего промышленного сырья. Таким способом можно осуществить прямое превращение метана в метанол – метиловый спирт – важнейшее сырье для производства многих химических веществ.
С участием металлоорганических соединений осуществляются важные промежуточные стадии многих органических реакций. Данные соединения богаты электронами, поэтому в природе они играют роль посредника во многих процессах переноса электронов.