
- •(Краткая история развития естествознания.)
- •Фундаментальные и прикладные проблемы естествознания.
- •2. Естествознание- основа современных наукоёмких технологий. Технологии (понятие,история, классификация). Научно-технические революции. Жизненный цикл технологий.
- •История
- •Среднее машиностроение
- •Жизненный цикл технологии
- •3.Инновации. Виды инноваций. Инновационные технологии. Жизненный цикл нововведений.
- •4. Техносфера. Особенности развития технологий. Обновление технологий и подъемы в экономике.
- •5. Представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, макромир и микромир.
- •6.Фундаментальные взаимодействия.
- •7. Механика как основа многих технологий. Основные законы и понятия механики.
- •8. Законы сохранения количества движения (импульса), энергии и момента количества движения,их примение в технике и технологиях. Принцип реактивного движения.
- •9. Применение фазовых переходов в технике и технологиях.
- •10.Элементная база компьютера. Развитие твердотельной электроники. Технологии микроэлектроники. Развитие нанотехнологии.
- •11.Основыне представления современной химии. Эволюционная химия. Синтез новых материалов и применение новых материалов в технике и технологиях.
- •12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И.Менделеева. Трансурановые элементы и их применение в технике и технологиях.
- •13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.И их применение в технике и технологиях.
- •14. Естественно-научные основы лазерных технологий. Особенности лазерного излучения. Применение лазеров в технике и технологиях.
- •15. Современные представления об эволюции Вселенной, галактик, звезд и звездных систем.
- •Галактики и их классификация. Наша галактика.
- •16. Солнечная система. Законы небесной механики – законы Кеплера. Солнечно-земные связи. Учение Чижевского. Ракетно-космические технологии.
- •А. Л. Чижевский
- •17. Гравитационное взаимодействие тел. Закон всемирного тяготения Ньютона. Космические скорости.
- •18.Явления самоорганизации в живой и неживой природе.Синергетика и её практические применение в технике и технологиях.
- •19. Основные понятия термодинамики. Первое и второе начало термодинамики.
- •20.Синтез органических и неорганических соединений. Биосинтез. Применение синтезированных соединений в технике и технологиях.
- •Классификация
- •Классификация
- •Биосинтез
- •Техническое использование переменного тока.
- •22. Электрический ток и магнитное поле и их примение в технике и технологиях. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •Закон фарадея и принцип действия электрических трансформаторов.
- •23. Геометрическая оптика и волновая теория света. Дисперсия, явления интерференции и дифракции, поляризация и их примениени в технике и технологиях.
- •Волновая теория света, явления интерференции и дифракции.
- •Практическое значение
- •24.Металлургические технологии.
- •История
- •Добывающая металлургия
- •25.Классификация двигателей и их принципы работы.
- •Первичные двигатели
- •Дизельные
- •Газовые
- •Пневмодвигатели и гидромашины
- •Тепловые двигатели по устройству
- •26. Информационные технологии. Суперкомпьютер. Нейронные сети. Технологические возможности реализации высокой информационной плотности.
- •Основные черты современных ит:
- •Программное обеспечение суперкомпьютеров
- •Технологические возможности реализации высокой информационной плотности
- •27. Энергетическое машиностроение. Станкостроение .Робототехника.
- •Системы управления
- •Наночастицы
- •Наноматериалы
- •Наноэлектроника в России
- •29.Машиностроительные технологии.
- •Среднее машиностроение
- •30. Основные научные достижения в биологии и генетики. Роль днк и рнк в системе управления генетической информацией. Наследственность и изменчивость.
- •Наследственность и изменчивость.
- •31.Ген. Геном. Генотип. Генная инженерия .Клонирование.
- •Экономическое значение
- •32. Биотехнологии- прикладное направление современной технологии. Применение биотехнологий в различных отраслях народного хозяйства.
- •33. Технологии строительства.
- •Объекты строительства — это:
- •34.Развитие химических технологий.Химические процессы. Виды катализа. Применение катализа в химических технологиях.
- •Основные процессы
- •Основные принципы катализа
- •Носитель катализатора
- •35.Транспортные технологии. Экономичный автомобиль. Виды транспорта (авиа, автомобильный, железнодорожный, речной, мосркой, трубопроводный) и их характеристика.
- •36.Научные методы исследования. Принципы познания.
- •37.Сознание и интеллект.Человек и эмоции. Исследования человеческого мозга и возможностей человека.
- •Абляции
- •Транскраниальная магнитная стимуляция
- •Электрофизиология
- •Электрическая стимуляция
- •Другие методики
9. Применение фазовых переходов в технике и технологиях.
Фа́зовый перехо́д (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.
Поскольку разделение на термодинамические фазы — более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.
Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).
Классификация фазовых переходов
При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов).
Наиболее распространённые примеры фазовых переходов первого рода:
плавление и кристаллизация
испарение и конденсация
сублимация и десублимация
При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д.
Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке переходапараметра порядка, равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.
Наиболее распространённые примеры фазовых переходов второго рода:
прохождение системы через критическую точку
переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядка — намагниченность)
переход металлов и сплавов в состояние сверхпроводимости (параметр порядка — плотность сверхпроводящего конденсата)
переход жидкого гелия в сверхтекучее состояние (п.п. — плотность сверхтекучей компоненты)
переход аморфных материалов в стеклообразное состояние
Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.
В последнее время широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.
Динамика фазовых переходов
Как сказано выше, под скачкообразным изменением свойств вещества имеется в виду скачок при изменении температуры и давления. В реальности же, воздействуя на систему, мы изменяем не эти величины, а её объем и её полную внутреннюю энергию. Это изменение всегда происходит с какой-то конечной скоростью, а значит, что для того, чтобы «покрыть» весь разрыв в плотности или удельной внутренней энергии, нам требуется некоторое конечное время. В течение этого времени фазовый переход происходит не сразу во всём объёме вещества, а постепенно. При этом в случае фазового перехода первого рода выделяется (или забирается) определённое количество энергии, которая называется теплотой фазового перехода. Для того, чтобы фазовый переход не останавливался, требуется непрерывно отводить (или подводить) это тепло, либо компенсировать его совершением работы над системой.
В результате, в течение этого времени точка на фазовой диаграмме, описывающая систему, «замирает» (т.е. давление и температура остаются постоянными) до полного завершения процесса.
Фазовые переходы второго рода — фазовые переходы, при которых первые производные термодинамических потенциалов по давлению и температуре изменяются непрерывно, тогда как их вторые производные испытывают скачок. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д.
Фазовые переходы второго рода сопровождаются изменением симметрии вещества. Изменение симметрии может быть связано со смещением атомов определённого типа в кристаллической решётке, либо с изменением упорядоченности вещества.
В большинстве случаев, фаза, обладающая большей симметрией (т. е. включающей в себя все симметрии другой фазы), соответствует более высоким температурам, но существуют и исключения. Например, при переходе через нижнюю точку Кюри в сегнетовой соли, фаза, соответствующая меньшей температуре, обладает ромбической симметрией, в то время как фаза, соответствующая большей температуре, обладает моноклинной симметрией.
Для количественной характеристики симметрии при фазовом переходе второго рода вводится параметр порядка, пробегающий отличные от нуля значения в фазе с большей симметрией, и тождественно равный нулю в неупорядоченной фазе.