
- •1.(2) Электрогенератор. Электродвигатель. Применение их в технике и технологиях.
- •2. (2) Топливные элементы. Водородная энергетика.
- •5. (2) Радиактивность и закон радиоактивного распада. Изотопы. Технологии утилизации радиоактивных отходов и материалов.
- •6.(2) Производство металлов (сталь, чугун, алюминий).
- •7. Новые материалы. Синтетические материалы. Полимерные материалы. Термопласты и реактопласты, эластомеры, пластмассы и их применение в технике и технологиях.
- •8.(2) Поведение веществ в магнитных полях. Ферромагнетики и ферриты и их применение в технике и технологиях.
- •9.(2) Поведение веществ в электрических полях. Диэлектрики и пьезоэлектрики и их применение в технике и технологиях.
- •10.(2) Ядерная энергия и проблемы ее использования. Термоядерный синтез. Энергоэффективные технологии.
- •11.(2) Источники энергии. Способы преобразования энергии. Тэс, гэс, аэс. Альтернативная энергетика.
- •12.(2) Сущность параметров давления и температуры, их влияние на фазовое состояние вещества, использование на практике, в технике и технологиях.
- •13.(2) Свойства металлов (электропроводность, звукопроводность, твердость, пластичность, ковкость, плавкость, плотность).
- •14.(2) Электромагнитное излучение и его природа. Шкала электромагнитных волн, области применения различных частотных диапазонов в технике и технологиях.
- •15.(2) Взаимодействие электромагнитного поля и движущегося заряда. Сила лоренца. Принцип действия электрогенераторов.
- •16.(2) Закон фарадея и принцип действия электрических трансформаторов. Линии электропередач.
- •17.(2) Техническое использование переменного тока.
- •18.(2) Основные закономероности цепей переменного тока. Закон ома для цепей переменного тока. Последовательный и переменный резонансы. Явление резонанса и его применение в науке и технологиях.
- •20.(2) Физические основы акустики. Эволюция средств звукозаписи и воспроизведения звука.
- •21.(2) Новые технологии передачи и хранения информации.
- •22.(2) Квантовые эффекты в микромире. Виды спектров. Спектральный анализ и его применение в технике и технологиях.
- •23.(2) Выделение информации на фоне помех. Использование явления резонанса для выделения полезного сигнала. Использование и применение явления резонанса в науке и технологиях.
- •24.(2) Эффект доплера и его применение в технике и технологиях.
- •25.(2) Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект доплера, акустическая кавитация, диффузия, гидростатическое давление) в машиностроении.
- •26.(2) Тепловая машина. Цикл карно. Паровая машина. Использование тепловых машин в технике и технологиях.
- •27.(2) Промышленная переработка топлива (коксование угля, крекинг нефти, переработка нефти методом ректификации).
- •28.(2) Классы точности измерительных приборов. Абсолютные и относительные погрешности. Измерительные технологии.
- •29.(2) Простые машины (рычаг, блок, наклонная плоскость, клин). Строительные машины.
- •31.(2) Звуковые волны. Инфразвук, гиперзвук, ультразвук и его применение в технике и технолог иях.
- •32.(2) Использование достижений естесственных наук в приборостроении. Приборостроение.
- •Виды измерительных приборов:
- •33. (2) Сущность процесса измерения. Виды измерений. Роль измерений в науке, технике. Погрешности измерений, их виды, причины возникновения.
- •34.(2) Добывающая и перерабатывающая промышленность. Инновации в добывающей и перерабатывающей промышленности.
- •Прядение и технология прядильного производства (относится к текстильной промышленности)
- •37.(2) Формы движения материи. Потенциальная и кинетическая энергии, их природа и взаимопревращение.
9.(2) Поведение веществ в электрических полях. Диэлектрики и пьезоэлектрики и их применение в технике и технологиях.
Всякое вещество, помешенной в магнитное и электрическое поле испытывает воздействие со стороны этого поля. Это воздействие для разных веществ различно, соответственно различна и реакция веществ на поле.
Диэлектрики - это вещества, не проводящие электрического тока. Молекулы диэлектрика эквивалентны электрическим диполям.
В отсутствие внешнего электрического поля электрические моменты диполей диэлектрика, не являющегося сегнетоэлектриком, расположены хаотично, и их результирующий момент равен нулю. Во внешнем же электрическом поле диэлектрики поляризуются, т.е. переходят в состояние, когда дипольные моменты молекул отличны от нуля. В таком состоянии диэлектрики называются поляризованными.
Различают: - ориентационную поляризацию, которая состоит в повороте осей жестких диполей молекул полярного диэлектрика вдоль направления электрического поля;
- электронную поляризацию диэлектрика с неполярными молекулами, состоящую в возникновении у каждой молекулы индуцированного электрического момента и осуществляющуюся в жидкостях и газах;
- ионную поляризацию в кристаллических диэлектриках, например, в Nа-Сl, имеющих ионные кристаллические решетки, состоящую в смешении положительных ионов решетки вдоль поля, а отрицательных - в противоположную сторону.
В результате образуются в противоположных направлениях как бы дополнительные (поляризационные) заряды, создающие внутри диэлектрика дополнительное поле, направленное против внешнего поля.
Диэлектрики широко используются в конденсаторах. Емкость конденсатора будет тем больше, чем больше диэлектрическая проницаемость диэлектрика, расположенного между пластинами.
Пьезоэлектриками называется группа кристаллических диэлектриков, у которых в отсутствие внешнего электрического поля при механических деформациях в определенных направлениях на гранях кристаллов возникают электрические заряды противоположных знаков. Обратный пьезоэлектрический эффект заключается в изменении линейных размеров под действием электрического поля. Пьезоэлектрическим эффектом обладают кварц, турмалин и ряд других веществ. Широко используются искусственные пьезоэлектрики на керамиках - титанат бария и цирконат титанат свинца (ЦТС). Эффект широко используется в радиотехнике в генераторах высоких частот высокой стабильности и точности, в которых кварцевые или керамические пластины с металлизированными обкладками используются в качестве стабилизаторов частоты. Прямой пьезоэффект используется в пьезозажигалках, в звукоснимателях электропроигрывателей грампластинок, в эхолокаторах и во взрывателях. Обратный пьезоэффект используется а излучателях ультразвука или звуку. Ультразвук широко используется в медицине, в морской технике и в промышленности.
10.(2) Ядерная энергия и проблемы ее использования. Термоядерный синтез. Энергоэффективные технологии.
Ядерная энергия — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях (ранее использовался термин Атомная энергия). Известны экзотермические ядерные реакции, высвобождающие ядерную энергию.
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло. Другим способом высвобождения ядерной энергии является термоядерный синтез. При этом два ядра лёгких элементов соединяются в одно тяжёлое. Такие процессы происходят на Солнце.
Многие типы атомных ядер являются неустойчивыми. С течением времени часть таких ядер самопроизвольно превращаются в другие ядра, высвобождая энергию. Такое явление называют радиоактивным распадом.
Энергия деления ядер урана или плутония применяется в атомных бомбах, ядерных ракетах, ядерных снарядах и минах. В атомных электрических станциях ядерная энергия используется для получения электроэнергии и для отопления. Деление ядра лежит в основе двигателей атомных ледоколов, атомных подводных лодок, атомных авианосцев. Использованием ядерной энергии в целях электрификации и теплофикации занимается ядерная энергетика. Энергия термоядерного синтеза применяется в водородной бомбе.
Атомные электростанции выделяют очень опасные ядерные отходы, которые могут вызвать рак, мутации (изменения ДНК) и даже смерть человека. Сегодня жидкие отходы просто откачиваются в моря, газообразные – в воздух. Запас твердых отходов накапливается. Небольшая их часть сейчас сбрасывается в моря. В основном опасный мусор закапывается, а также хранится на земле в контейнерах, в которых в любой момент могут появиться щели.
Термоядерная реакция (синоним: ядерная реакция синтеза) — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые ядра.
Управляемый термоядерный синтез— синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий(2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).
Одним из действенных способов уменьшить влияние человека на природу является увеличение эффективности использования энергии - энергосберегающие технологии. В самом деле, современная энергетика, основанная в первую очередь на использовании ископаемых видов топлива (нефть, газ, уголь), оказывает наиболее массивное воздействие на окружающую среду. Начиная от добычи, переработки и транспортировки энергоресурсов и заканчивая их сжиганием для получения тепла и электроэнергии - все это весьма пагубно отражается на экологическом балансе планеты.
Энергосберегающая лампа — электрическая лампа, обладающая существенно большей светоотдачей (соотношением между световым потоком и потребляемой мощностью), например в сравнении с наиболее распространёнными сейчас в обиходе лампами накаливания. Благодаря этому применение энергосберегающих ламп способствует экономии электроэнергии.
Признанными авторитетами в области снижения энергоёмкости систем вентиляции и кондиционирования являются компании Hoval (Лихтенштейн) и Dantherm (Дания). В своей продукции применяют новейшие технологии и конструкторские разработки, позволяющие уменьшить энергозатраты при сохранении высокой производительности.
Например, отличительной особенностью агрегатов производства Hoval является использование патентованного воздухораспределителя, обеспечивающего формирование приточной струи с дальнобойностью от 3,5 до 18 м за счёт автоматически регулируемого положения лопаток, закручивающих воздушный поток. Основным преимуществом такой конструкции является высокая энергетическая эффективность благодаря улучшенным показателям организации воздухообмена, рециркуляции воздуха и рекуперации тепла.
В последние годы все энергоэффективные технологии объединяются в концепцию так называемого пассивного дома, то есть жилища, максимально дружелюбного окружающей среде. В Западной Европе сейчас строятся пассивные дома с энергопотреблением не более 15 Квт, ч/м3 год, что более чем в 10 раз экономичнее типовой отечественной "хрущевки". Можно сказать, что такие здания - это будущее мирового строительства, ведь они фактически отапливаются за счет тепла, выделяемого людьми и электроприборами.